Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Test 1

This page is a draft and is under active development. 

( \newcommand{\kernel}{\mathrm{null}\,}\)

These mock exams are provided to help you prepare for Term/Final tests. The best way to use these practice tests is to try the problems as if you were taking the test. Please don't look at the solution until you have attempted the question(s). Only reading through the answers or studying them, will typically not be helpful in preparing since it is too easy to convince yourself that you understand it.

Mock Exam (Test 1)

You can try timing yourself for 60 minutes.

Exercise 1

Calculate the following four limits or explain why they do not exist:

Exercise 1.1

limx22x2x6x2

Answer

First set x=2, and we get limx22x2x6x2=2(22)2622[00].

Now, limx22x2x6x2=limx2(2x+3)(x2)x2=limx2(2x+3)=2(2)+3=7.

Exercise 1.2

limy14cos1(12y)

Answer

Since cos1(y) is continuous on [0,π] and limy14(12y)=12(14)=12 exists,

limy14cos1(12y)=cos1(12)=π3.

Exercise 1.3

limy0|7y2+6y+9|

Answer

Since absolute value function is continuous and limy07y2+6y+9= 3, limy0|7y2+6y+9|=|3|=3.

Exercise 1.4

limx9x32x18

Answer

limx9x32x18=931818[00]

=limx9(x3)(x+3)(2x18)(x+3)

=limx9(x9)2(x9)(x+3)

=limx912(x+3)

=12(9+3)=112

Exercise 2

Determine where cos1x(tan(x)1) is continuous.

 

Answer

Since cos1(y) is continuous on [1,1] and (tan(x)1)=0 when x=π4,

cos1x(tan1x1) is continuous on [1,1]π4. Note that π4<1

Exercise 3

Use the Intermediate Value Theorem to show that the equation

4x56x3+10x35=0 has at least one solution in the interval [0,1]

Answer

Let f(x)=4x56x3+10x35. Then f(x) is continuous and f(0)=5 and f(1)=3.

Since 5<0<3,by the Intermediate Value Theorem there exist at least one real number k in the interval [0,1] such that f(k)=0

Exercise 4

The equation Q=12e0.055t gives the mass Q in grams of the radioactive isotope potassium42 that will remain from some initial quantity after t hours of radio active decay.

a) How many grams are there initially (i.e. at time 0 hours [t=0])

b) How long will it take to reduce the amount of radioactive isotope potassium42 to one third of the original amount?

Answer

a) t=0, then Q=12e0.055(0)=12g.

b) We need to find t when Q = One third of the original amount is 12(1/3)g, Then 4=12e0.055(t).

Thus 1/3=e0.055(t).

t=10.055ln(13)=ln(3)0.055.

Exercise 5

Consider f(x)=2x+1x1. Use limits to find any horizontal and vertical asymptotes of this function.

  1. limx2+f(x)
  2. limx2f(x)
  3. limx1+f(x)
  4. limx1f(x)
  5. limxf(x)
  6. limxf(x)
  7. Find any horizontal and vertical asymptotes of this function.
Answer

limx2+f(x)=5

limx2f(x)=5

limx1+f(x)=

limx1f(x)=

limxf(x)=2

limxf(x)=2

Horizontal and vertical asymptotes of this function are x=1 and y=2.

Exercise 6

a) Use the definition of the derivative to find f(x) for

f(x)=13x+1

Hint:

The definition of the derivative f(x)=limh0f(x+h)f(x)h.

Answer

f(x)=3(3x+1)2.

Solution:

f(x)=limh0f(x+h)f(x)h.

b) Find the slope of the tangent line to the graph at the point x=1.

Answer

f(x)=316.

Exercise 7

An object has swimmed the distance s(t)=t2t2+1 meters in t seconds. Determine its velocity when t=3.

Answer

350

 


Test 1 is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

  • Was this article helpful?

Support Center

How can we help?