0.5: Proof Templates
- Page ID
- 132680
Proof Templates
-
To prove injective relationship (ie prove one to one)
Is \(f(x_1) = f(x_2)\)?
YES then you need to prove \(x_1=x_2\).
Let \(A\) be a set. Let \(x_1,x_2 \in A\) such that \(f(x_1)=f(x_2)\).
⠇
Show \(x_1=x_2\).
NO then you need to provide one counterexample where \(x_1 \ne x_2\) when \(f(x_1) = f(x_2)\).
-
Is there a surjective relationship (i.e. prove onto)?
YES Note we are starting from \(f: A \rightarrow B\). Thus \(f(A)\subseteq B\) by definition.
Let \(A\) and \(B\) be sets where \(A\) is onto \(B\) if and only if \(f(A) \subseteq B\) and \(B \subseteq f(A)\).
By definition, \(f(A) \subseteq B\). Next show \(B \subseteq f(A)\).
Let \(x \in B\).
⠇
Show \(x \in f(A)\).
Conclude with: Since \(f(A) \subseteq B\) and \(B \subseteq f(A)\) therefore \(f\) is onto.◻
NO then need to find a counterexample where \(b \in B\), but there is no \(a \in A\) whereby \(f(a)=b\).
-
Reflexive, Symmetric, Anti Symmetric, Transitive Property Proofs
Need a non empty set \(A\) and a relation \(R\).
-
Reflexive
Let \(a \in A\). ← Starting point
⠇
Show \(aRa\) ← Ending point
-
Symmetric
Let \(a, b \in A\) s.t. \(aRb\).
⠇
Show \(bRa\)
-
Antisymmetric
Let \(a,b \in A\) s.t. \(aRb\) and \(bRa\)
⠇
Show \(a=b\).
-
Transitive
Let \(a,b,c \in A\) s.t. \(aRb\) and \(bRa\).
⠇
Show \(aRc\).