# 2.2: Properties of Group Elements

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$
##### Theorem $$\PageIndex{1}$$

Let $$(G, \ast)$$ be a group.    Then

1. The identity is unique,

2. For each $$a \in G$$, one and only one inverse exists.

3. For each $$a \in G, \ (a^{-1})^{-1}=a$$.

4. $$(a\ast b)^{-1}=b^{-1} \ast a^{-1}, \forall a,b \in G.$$

Note if $$G$$ is abelian,$$(a\ast b)^{-1}=b^{-1} \ast a^{-1}=a^{-1} \ast b^{-1}, \forall a,b \in G$$.

5. If $$xy=xz, \forall x,y,z \in G$$, then  $$y=z$$.  (Left cancellation)

6. If $$yx=zx, \forall x,y,z \in G$$, then  $$y=z$$.  (Right cancellation)

Proof:

Let $$(G,\ast)$$ be a group.

1. We shall show that identity is unique.

Assume that $$G$$ has two identity elements, $$e_1$$ and $$e_2$$.

Thus $$a \ast e_1=e_1 \ast a=a$$ and $$a \ast e_2=e_2 \ast a=a$$, $$\forall a \in G$$.

We will show that $$e_1=e_2$$.

Consider $$e_1 \ast e_2=e_2 \ast e_1 =e_1$$ and $$e_2 \ast e_1=e_1 \ast e_2 =e_2$$.

Thus since $$e_1=e_2$$, the identity is unique.◻

2. We shall show that for each $$a \in G$$, one and only one inverse exists.

Let $$a \in G$$.

Assume that $$a$$ has two inverses, $$b$$ and $$c$$.

Then $$a \ast b=b \ast a=e$$ and $$a \ast c=c \ast a=e$$.

We shall show that $$b=c$$.

Consider $$b=b \ast e$$

$$=b \ast(a \ast c)$$

$$=(b \ast a) \ast c$$

$$=e \ast c$$

$$=c$$.

Thus $$b=c$$ and for each $$a \in G$$, there exists one and only one inverse.

3. We shall show that for each $$a \in G, \ (a^{-1})^{-1}=a$$.

Let $$a \in G$$. Then  $$a \ast a^{-1}=a^{-1}\ast a=e$$.

Thus $$(a^{-1})^{-1}=b^{-1}=a$$.

Assume that $$G$$ has two identity elements, $$e_1$$ and $$e_2$$.

Thus $$a \ast e_1=e_1 \ast a=a$$ and $$a \ast e_2=e_2 \ast a=a$$, $$\forall a \in G$$.

We will show that $$e_1=e_2$$.

Consider $$e_1 \ast e_2=e_2 \ast e_1 =e_1$$ and $$e_2 \ast e_1=e_1 \ast e_2 =e_2$$.

Thus since $$e_1=e_2$$, the identity is unique.◻

4.

Let $$a,b \in G$$.

Then $$a \ast b \in G$$, $$a^{-1} \in G$$, $$b^{-1} \in G$$ and $$a \ast b \in G$$.

Consider $$(b^{-1} \ast a^{-1})(a \ast b)= b^{-1} \ast (a^{-1}a) \ast b)$$

$$=b^{-1}\ast e \ast b$$

$$=b^{-1}\ast b$$

$$=e$$.

And consider  $$(a \ast b)(b^{-1} \ast a^{-1})=a \ast ( b^{-1} \ast b) \ast a^{-1}$$

$$=a^{-1}\ast e \ast a$$

$$=a^{-1}\ast a$$

$$=e$$.

Since $$(b^{-1} \ast a^{-1})(a \ast b)=e= (a \ast b)(b^{-1} \ast a^{-1})$$, then $$(a\ast b)^{-1}=b^{-1} \ast a^{-1}, \forall a,b \in G$$.◻

5.

Let $$x,y,z \in G$$ s.t. $$xy=xz$$.

Note:  $$x^{-1} \in G$$ since $$G$$ is a group.

Thus $$x^{-1}(xy)=x^{-1}(xz)$$

Thus $$(x^{-1}x)y=(x^{-1}x)z$$ since  associative.

Thus $$ey=ez$$ and $$y=z$$.◻

6.

Let $$x,y,z \in G$$ s.t. $$y \ast x=z \ast x$$.

Note:  $$x^{-1} \in G$$ since $$G$$ is a group.

Thus $$(y \ast x) \ast x^{-1}=(z \ast x) \ast x^{-1}$$

Thus $$y \ast (x^{-1} \ast x)=z \ast (x^{-1} \ast x)$$ since  associative.

Thus $$y \ast e=z \ast e$$ and $$y=z$$.◻

##### Theorem $$\PageIndex{2}$$

Let $$G$$ be a group.

Let $$g,h \in G$$ and $$m,n \in \mathbb{N}$$.

Then

1. $$g^m \ast g^n=g^{m+n}$$ where $$g^m=g \ast \cdots \ast g$$.  Note there would be $$m$$ $$g$$’s.

2. $$(g^m)^n=g^{mn}$$.

3. $$(gh)^{-m}=(h^{-1} g^{-1})^m$$.

##### Note

With the addition operation $$g^m=mg.$$

##### Example $$\PageIndex{1}$$

Let $$G$$ be a group and suppose that $$(ab)^2=a^2b^2$$ for all $$a$$ and $$b$$ in $$G$$.  Prove that $$G$$ is an abelian group.

###### Solution

Let $$G$$ be a group.

Let $$(ab)^2=a^2b^2, \; \forall a,b \in G$$.

We shall show that $$G$$ is abelian.

Let $$a,b \in G$$.

We shall show that $$ab=ba$$.

Note that $$(a \star b)\star (a \star b)= (a \star a) \star (b \star b)$$.

Consider that $$a^{-1} \star (a \star b) \star (a \star b)\star b^{-1}=a^{-1} \star (a \star a) \star (b \star b) \star b^{-1}$$.

Then $$(a^{-1} \star a) \star b \star a \star (b \star b^{-1})=(a^{-1} \star a)\star a \star b \star (b \star b^{-1})$$.

Thus $$e \star b \star a \star e=e \star a \star b \star e$$.

Thus $$b \star a=a \star b$$.◻

Note:  Operator * included for students.

This page titled 2.2: Properties of Group Elements is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pamini Thangarajah.