Skip to main content
Mathematics LibreTexts

6E: Exercises

  • Page ID
    132674
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise \(\PageIndex{1}\)
    1. Prove or disprove: Every finite integral domain is a field.

    2. Prove or disprove: Every division ring is an integral domain.

     

    Exercise \(\PageIndex{2}\)

    List or characterize all of the units in each of the following rings.

    1.  
    Exercise \(\PageIndex{3}\)

     Prove or disprove: \(\mathbb{Z}[\sqrt{5}]=\{a+b\sqrt{5}i : a,b \in \mathbb{Z} \}\)  is an integral domain.

     

    Exercise \(\PageIndex{4}\)

    \( p \) be a prime. Prove that \( \mathbb{Z}_{(p)}=\{a/b| a,b \in \mathbb{Z} \, and \, \gcd(b,p)=1 \} \) is a ring.

     

    Exercise \(\PageIndex{5}\)

    Let \(R\) be a ring. If \(ab+ba=1 \) and \( a^3=a\), \(\forall a,b\in R,\) then show that \(a^2=1.\)

    Exercise \(\PageIndex{6}\)

    Show that \( \mathbb{Q}(\sqrt{5}i) = \{r+s \sqrt{5}i : r,s \in \mathbb{Q} \} \) is a subfield of \(\mathbb{C}.\)

    Exercise \(\PageIndex{7}\)

    An element \(e\) of a ring \(R\) is said to be idempotent if \(e^2=e.\)

    1. Find all idempotents in \(\mathbb{Z}_{12}.\)

    2. Find all the idempotents in an integral domain \(R.\)

    3. If \(a^m=a^{m+n}, m, n \in \mathbb{N}, \) show that some power of \(a\) is an idempotent.

    4. If \( R\) is a finite ring, show that some power of each element of \(R\) is an idempotent.

    Exercise \(\PageIndex{8}\)

    Show that the multiplication defined for the field of quotients of an integral domain:

    1. Is well defined

    2. Is associative

    3. Satisfies the distributive laws.

    Exercise \(\PageIndex{9}\)

    An element \(a\) of a ring \(R\) is said to be nilpotent if \(a^n=0, \) for some \( n \in \mathbb{N}.\)

    1. Find all nilpotents in \(\mathbb{Z}_{12}.\)

    2. Find all the nilpotents in an integral domain \(R.\)

     

     

    Exercise \(\PageIndex{10}\)

    Let \( a, u \in R. \) If \(u\) is a unit and \(a\) is nilpotent such that \(ua=au, \) show that \(u+a\) is a unit.

     

     


    This page titled 6E: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pamini Thangarajah.

    • Was this article helpful?