Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

5.3: Ring Homomorphisms

( \newcommand{\kernel}{\mathrm{null}\,}\)

Ring Homomorphisms

Definition: Ring homomorphisms

Let R,S be rings. A function ϕ:RS is called a ring homomorphism if 

  1. ϕ(a+b)=ϕ(a)+ϕ(b),a,bR, and 

  2. ϕ(ab)=ϕ(a)ϕ(b),a,bR.

 

If ϕ is bijective, then ϕ is called isomorphism.

Example 5.3.1

Show that  the function ϕ:Z2Z2 defined by ϕ(x)=x2,xZ2 is a ring homomorphism.

Solution

Let a,biZ2.

Consider ϕ(a+b)=(a+b)2=a2+2ab+b2=a2+b2=ϕ(a)+ϕ(b).

Consider ϕ(ab)=(ab)2=a2b2=ϕ(a)ϕ(b).

Hence, ϕ is a ring homomorphism.

 
Example 5.3.2

Whether  or not the function ϕ:ZZ defined by ϕ(x)=2x,xZ is a ring homomorphism? Justify your answer.

Solution

Choose a=2 and b=3. Then   ϕ(2)=4 and ϕ(3)=6ϕ(a)ϕ(b)=(4)(6)=24 but ϕ(ab)=ϕ((2)(3))=ϕ(6)=12ϕ(a)ϕ(b)

Hence, ϕ is  not a ring homomorphism.

Definition: Kernel of a homomorphism

The kernel of ϕ is denoted and defined as Ker(ϕ)={rR|ϕ(r)=0}.

Example 5.3.3

Define ϕ:ZZn by ϕ(a)=a(modn),aR.

Then ϕ is a ring homomorphism but not an isomorphism. In this case, Ker(ϕ)=nZ.

Properties of ring homomorphisms:

Theorem 5.3.1

Let R,S be rings. Let ϕ:RS be a ring homomorphism. Then,

Then 

  1. ϕ(0)=0.

  2. if R is a commutative ring, then ϕ(R) is also a commutative ring.

  3. if R is a field and ϕ(R){0} then ϕ(R) is also a field.

  4. if R and S have an identity. If ϕ is onto then ϕ(1R)=1S.

Theorem 5.3.2

Let R,S be rings. Let ϕ:RS be a ring homomorphism. Then Ker(ϕ) is an ideal of R.

 

 


This page titled 5.3: Ring Homomorphisms is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pamini Thangarajah.

Support Center

How can we help?