Skip to main content
Mathematics LibreTexts

5.3: Ring Homomorphisms

  • Page ID
    132673
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Ring Homomorphisms

    Definition: Ring homomorphisms

    Let \( R, S \) be rings. A function \( \phi: R \to S \) is called a ring homomorphism if 

    1. \( \phi(a+b)=\phi(a)+\phi (b), \forall a,b \in R, \) and 

    2. \( \phi(ab)=\phi(a) \phi (b), \forall a,b \in R. \)

     

    If \( \phi \) is bijective, then \( \phi \) is called isomorphism.

    Example \(\PageIndex{1}\)

    Show that  the function \(\phi:\mathbb{Z}_2 \to \mathbb{Z}_2\) defined by \(\phi(x)=x^2, x \in \mathbb{Z}_2 \) is a ring homomorphism.

    Solution

    Let \(a, b \in i\mathbb{Z}_2.\)

    Consider \( \phi(a+b)=(a+b)^2=a^2+2ab+b^2=a^2+b^2=\phi(a)+\phi (b).\)

    Consider \( \phi(ab)=(ab)^2=a^2b^2=\phi(a)\phi (b).\)

    Hence, \(\phi\) is a ring homomorphism.

     
    Example \(\PageIndex{2}\)

    Whether  or not the function \(\phi:\mathbb{Z} \to \mathbb{Z}\) defined by \(\phi(x)=2x, x \in \mathbb{Z} \) is a ring homomorphism? Justify your answer.

    Solution

    Choose \(a=2\) and \(b=3\). Then   \( \phi(2)=  4\) and \(\phi(3)=6\),  \(\phi(a)\phi (b)=(4)(6)=24\) but \( \phi(ab)=\phi((2)(3))=\phi(6)=12\ne \phi(a)\phi(b)\). 

    Hence, \(\phi\) is  not a ring homomorphism.

    Definition: Kernel of a homomorphism

    The kernel of \( \phi \) is denoted and defined as \( Ker(\phi) = \{ r \in R | \phi(r)=0 \}. \)

    Example \(\PageIndex{3}\)

    Define \( \phi: \mathbb{Z} \to \mathbb{Z}_n \) by \( \phi(a)=a(mod n), \forall a\in R. \)

    Then \( \phi \) is a ring homomorphism but not an isomorphism. In this case, \( Ker(\phi) = n \mathbb{Z}. \)

    Properties of ring homomorphisms:

    Theorem \(\PageIndex{1}\)

    Let \( R, S \) be rings. Let \( \phi: R \to S \) be a ring homomorphism. Then,

    Then 

    1. \( \phi(0)=0. \)

    2. if \( R \) is a commutative ring, then \( \phi(R) \) is also a commutative ring.

    3. if \( R \) is a field and \( \phi(R) \ne \{0\} \) then \( \phi(R) \) is also a field.

    4. if \( R \) and \(S \) have an identity. If \( \phi \) is onto then \( \phi(1_R)=1_S. \)

    Theorem \(\PageIndex{2}\)

    Let \( R, S \) be rings. Let \( \phi: R \to S \) be a ring homomorphism. Then \( Ker (\phi)\) is an ideal of \(R\).

     

     


    This page titled 5.3: Ring Homomorphisms is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pamini Thangarajah.

    • Was this article helpful?