# 2.3: Arithmetic of inequality

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

Definition: Inequality

Let $$a, b\in \mathbb{Z}$$. Then

1. $$a< b$$ provided $$b=a + k$$, for some $$k \in \mathbb{Z_+}$$.
2. $$a> b$$ provided $$a=b + h$$, for some $$h \in \mathbb{Z_+}$$.

Theorem $$\PageIndex{1}$$

Let $$a, b\in \mathbb{Z}$$.

1. If $$a< b$$ then $$a+c< b+c$$, $$\forall c \in \mathbb{Z}$$.
2. If $$a< b$$ then $$ac< bc$$,$$\forall c \in \mathbb{Z_+}$$.
3. If $$a< b$$ then $$ac> bc$$,$$\forall c \in \mathbb{Z_-}$$.
4. If $$a< b$$ and $$c< d$$ then $$a+c< b+d$$.
Proof

Let $$a, b, c \in \mathbb{Z}$$ such that $$a <b$$. Then $$b=a + k$$, for some $$k \in \mathbb{Z_+}$$.

1. Now consider, $$b+c= (a+k)+c= (a+c)+k$$, for some $$k \in \mathbb{Z_+}$$. Thus $$a+c< b+c$$.

2.

Example $$\PageIndex{1}$$:

Determine all integers $$m$$ that satisfy $$-12m \geq 324$$.

Solution

Since $$-12m \geq 324$$, $$m \leq -\dfrac{324}{12}=-27$$.

Example $$\PageIndex{2}$$:

Determine all integers $$m$$ that satisfy $$14m \geq 635$$.

Solution

Since $$14m \geq 635$$, $$m \geq \dfrac{635}{14}=45.35$$. Thus the solutions are $$\{m\in \mathbb{Z}| m\geq 46\}.$$

Example $$\PageIndex{3}$$:

Determine all integers $$k$$ that satisfy $$-165+ 98k \geq 0, -335+199k \geq 0, -165+ 98k < 100$$ and $$-335+199k <100$$.

Solution

Since $$-165 + 98k ≥ 0, k ≥ 1.68$$.

Since $$-335 + 199k ≥ 0, k ≥ 1.68$$.

Since $$-165 + 98k < 100, 98k < 265,$$ and $$k < 2.70.$$

Since $$-335 + 199k < 100, 199k < 435,$$ and $$k < 2.18.$$

Since $$1.68 ≤ k < 2.18$$ and $$k ∈ ℤ, k = 2.$$

This page titled 2.3: Arithmetic of inequality is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Pamini Thangarajah.