Skip to main content
Library homepage
Mathematics LibreTexts

4.6E: Exercises

  • Page ID
  • This page is a draft and is under active development. 

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise \(\PageIndex{1}\)

    Use the ratio test to determine whether \(\displaystyle \sum^∞_{n=1}a_n\) converges, where \(\displaystyle a_n\) is given in the following problems. State if the ratio test is inconclusive.

    1) \(\displaystyle a_n=1/n!\)


    Solution: \(\displaystyle a_{n+1}/a_n→0.\) Converges.

    2) \(\displaystyle a_n=10^n/n!\)

    3) \(\displaystyle a_n=n^2/2^n\)


    Solution: \(\displaystyle \frac{a_{n+1}}{a_n}=\frac{1}{2}(\frac{n+1}{n})^2→1/2<1.\) Converges.Add texts here. Do not delete this text first.

    4) \(\displaystyle a_n=n^{10}/2^n\)

    5) \(\displaystyle \sum_{n=1}^∞\frac{(n!)^3}{(3n!)}\)


    Solution: \(\displaystyle \frac{a_{n+1}}{a_n}→1/27<1.\) Converges.

    6) \(\displaystyle \sum_{n=1}^∞\frac{2^{3n}(n!)^3}{(3n!)}\)

    7) \(\displaystyle \sum_{n=1}^∞\frac{(2n)!}{n^{2n}}\)


    Solution: \(\displaystyle \frac{a_{n+1}}{a_n}→4/e^2<1.\) Converges.

    8) \(\displaystyle \sum_{n=1}^∞\frac{(2n)!}{(2n)^n}\)

    9) \(\displaystyle \sum_{n=1}^∞\frac{n!}{(n/e)^n}\)


    Solution: \(\displaystyle \frac{a_{n+1}}{a_n}→1.\) Ratio test is inconclusive.

    10) \(\displaystyle \sum_{n=1}^∞\frac{(2n)!}{(n/e)^{2n}}\)

    11) \(\displaystyle \sum_{n=1}^∞\frac{(2^nn!)^2}{(2n)^{2n}}\)


    Solution: \(\displaystyle \frac{a_n}{a_{n+1}}→1/e^2.\) Converges.

    Exercise \(\PageIndex{2}\)

    Use the root test to determine whether \(\displaystyle \sum^∞_{n=1}a_n\) converges, where \(\displaystyle a_n\) is as follows.

    1) \(\displaystyle a_k=(\frac{k−1}{2k+3})^k\)

    2) \(\displaystyle a_k=\frac{(2k^2−1}{k^2+3})^k\)


    Solution: \(\displaystyle (a_k)^{1/k}→2>1.\) Diverges.

    3) \(\displaystyle a_n=\frac{(lnn)^{2n}}{n^n}\)

    4) \(\displaystyle a_n=n/2^n\)


    Solution: \(\displaystyle (a_n)^{1/n}→1/2<1.\) Converges

    5) \(\displaystyle a_n=n/e^n\)

    6) \(\displaystyle a_k=\frac{k^e}{e^k}\)


    Solution: \(\displaystyle (a_k)^{1/k}→1/e<1.\) Converges.

    7) \(\displaystyle a_k=\frac{π^k}{k^π}\)

    8) \(\displaystyle a_n=(\frac{1}{e}+\frac{1}{n})^n\)


    Solution: \(\displaystyle a^{1/n}_n=\frac{1}{e}+\frac{1}{n}→\frac{1}{e}<1.\) Converges.

    9) \(\displaystyle a_k=\frac{1}{(1+lnk)^k}\)

    10) \(\displaystyle a_n=\frac{(ln(1+lnn))^n}{(lnn)^n}\)


    Solution: \(\displaystyle a^{1/n}_n=\frac{(ln(1+lnn))}{(lnn)}→0\) by L’Hôpital’s rule. Converges.

    Exercise \(\PageIndex{3}\)

    In the following exercises, use either the ratio test or the root test as appropriate to determine whether the series \(\displaystyle \sum_{k=1}^∞a_k\) with given terms \(\displaystyle a_k\) converges, or state if the test is inconclusive.

    1) \(\displaystyle a_k=\frac{k!}{1⋅3⋅5⋯(2k−1)}\)

    2) \(\displaystyle a_k=\frac{2⋅4⋅6⋯2k}{(2k)!}\)


    Solution: \(\displaystyle \frac{a_{k+1}}{a_k}=\frac{1}{2k+1}→0.\) Converges by ratio test

    3) \(\displaystyle a_k=\frac{1⋅4⋅7⋯(3k−2)}{3^kk!}\)

    4) \(\displaystyle a)n=(1−\frac{1}{n})^{n^2}\)


    Solution: \(\displaystyle (a_n)^{1/n}→1/e.\) Converges by root test.

    5) \(\displaystyle a_k=(\frac{1}{k+1}+\frac{1}{k+2}+⋯+\frac{1}{2k})^k\) (Hint: Compare \(\displaystyle a^{1/k}_k\) to \(\displaystyle ∫^{2k}_k\frac{dt}{t}\).)

    6) \(\displaystyle a_k=(\frac{1}{k+1}+\frac{1}{k+2}+⋯+\frac{1}{3k})^k\)


    Solution: \(\displaystyle a^{1/k}_k→ln(3)>1.\) Diverges by root test.

    7) \(\displaystyle a_n=(n^{1/n}−1)^n\)

    Exercise \(\PageIndex{4}\)

    Use the ratio test to determine whether \(\displaystyle \sum_{n=1}^∞a_n\) converges, or state if the ratio test is inconclusive.

    1) \(\displaystyle \sum_{n=1}^∞\frac{3^{n^2}}{2^{n^3}}\)


    Solution: \(\displaystyle \frac{a_{n+1}}{a_n}= \frac{3^{2n+1}}{2^{3n^2+3n+1}}→0.\) Converge.

    2) \(\displaystyle \sum_{n=1}^∞\frac{2^{n^2}}{n^nn!}\)

    Exercise \(\PageIndex{5}\)

    Use the root and limit comparison tests to determine whether \(\displaystyle \sum_{n=1}^∞a_n\) converges.

    1) \(\displaystyle a_n=1/x^n_n\) where \(\displaystyle x_{n+1}=\frac{1}{2}x_n+\frac{1}{x_n}, x_1=1\) (Hint: Find limit of \(\displaystyle {x_n}\).)


    Solution: Converges by root test and limit comparison test since \(\displaystyle x_n→\sqrt{2}\).

    Exercise \(\PageIndex{6}\)

    In the following exercises, use an appropriate test to determine whether the series converges.

    1) \(\displaystyle \sum_{n=1}^∞\frac{(n+1)}{n^3+n^2+n+1}\)

    2) \(\displaystyle \sum_{n=1}^∞\frac{(−1)^{n+1}(n+1)}{n^3+3n^2+3n+1}\)


    Solution: Converges absolutely by limit comparison with p−series, \(\displaystyle p=2.\

    3) \(\displaystyle \sum_{n=1}^∞\frac{(n+1)^2}{n^3+(1.1)^n}\)

    4) \(\displaystyle \sum_{n=1}^∞\frac{(n−1)^n}{(n+1)^n}\)


    Solution: \(\displaystyle \lim_{n→∞}a_n=1/e^2≠0\). Series diverges.

    5) \(\displaystyle a_n=(1+\frac{1}{n^2})^n\) (Hint: \(\displaystyle (1+\frac{1}{n^2})^{n^2}≈e.)\)

    6) \(\displaystyle a_k=1/2^{sin^2k}\)


    Solution: Terms do not tend to zero: \(\displaystyle a_k≥1/2,\) since \(\displaystyle sin^2x≤1.\

    7) \(\displaystyle a_k=2^{−sin(1/k)}\)

    8) \(\displaystyle a_n=1/(^{n+2}_n)\) where \(\displaystyle (^n_k)=\frac{n!}{k!(n−k)!}\)


    Solution: \(\displaystyle a_n=\frac{2}{(n+1)(n+2)},\) which converges by comparison with p−series for \(\displaystyle p=2\)

    9) \(\displaystyle a_k=1/(^{2k}_k)\)

    10) \(\displaystyle a_k=2^k/(^{3k}_k)\)


    Solution: \(\displaystyle a_k=\frac{2^k1⋅2⋯k}{(2k+1)(2k+2)⋯3k}≤(2/3)^k\) converges by comparison with geometric series

    11) \(\displaystyle a_k=(\frac{k}{k+lnk})^k\) (Hint: \(\displaystyle a_k=(1+\frac{lnk}{k})^{−(k/lnk)lnk}≈e^{−lnk}\).)

    12) \(\displaystyle a_k=(\frac{k}{k+lnk})^{2k}\) (Hint: \(\displaystyle a_k=(1+\frac{lnk}{k})^{−(k/lnk)lnk^2}.)\)


    Solution: \(\displaystyle a_k≈e^{−lnk^2}=1/k^2.\) Series converges by limit comparison with \(\displaystyle p−series, p=2.\)

    Exercise \(\PageIndex{7}\)

    The following series converge by the ratio test. Use summation by parts, \(\displaystyle \sum_{k=1}^na_k(b_{k+1}−b_k)=[a_{n+1}b_{n+1}−a_1b_1]−\sum_{k=1}^nb_{k+1}(a_{k+1}−a_k),\) to find the sum of the given series.

    1) \(\displaystyle \sum_{k=1}^∞\frac{k}{2^k}\) (Hint: Take \(\displaystyle a_k=k\) and \(\displaystyle b_k=2^{1−k}\).)

    2) \(\displaystyle \sum_{k=1}^∞\frac{k}{c^k},\) where \(\displaystyle c>1\) (Hint: Take \(\displaystyle a_k=k\) and \(\displaystyle b_k=c^{1−k}/(c−1)\).)


    Solution: If \(\displaystyle b_k=c^{1−k}/(c−1)\) and \(\displaystyle a_k=k\), then \(\displaystyle b_{k+1}−b_k=−c^{−k}\) and \(\displaystyle \sum_{n=1}^∞\frac{k}{c^k}=a_1b_1+\frac{1}{c−1}\sum_{k=1}^∞c^{−k}=\frac{c}{(c−1)^2}.\)

    3) \(\displaystyle \sum_{n=1}^∞\frac{n^2}{2^n}\)

    4) \(\displaystyle \sum_{n=1}^∞\frac{(n+1)^2}{2^n}\)


    Solution: \(\displaystyle 6+4+1=11\)

    Exercise \(\PageIndex{8}\)

    The kth term of each of the following series has a factor \(\displaystyle x^k\). Find the range of \(\displaystyle x\) for which the ratio test implies that the series converges.

    1) \(\displaystyle \sum_{k=1}^∞\frac{x^k}{k^2}\)

    2) \(\displaystyle \sum_{k=1}^∞\frac{x^{2k}}{k^2}\)


    Solution: \(\displaystyle |x|≤1\)

    3) \(\displaystyle \sum_{k=1}^∞\frac{x^{2k}}{3^k}\)

    4) \(\displaystyle \sum_{k=1}^∞\frac{x^k}{k!}\)


    Solution: \(\displaystyle |x|<∞\

    5) Does there exist a number \(\displaystyle p\) such that \(\displaystyle \sum_{n=1}^∞\frac{2^n}{n^p}\) converges?

    6) Let \(\displaystyle 0<r<1.\) For which real numbers \(\displaystyle p\) does \(\displaystyle \sum_{n=1}^∞n^pr^n\) converge?


    Solution: All real numbers \(\displaystyle p\) by the ratio test.

    7) Suppose that \(\displaystyle \lim_{n→∞}∣\frac{a_{n+1}}{a_n}∣=p.\) For which values of \(\displaystyle p\) must \(\displaystyle \sum_{n=1}^∞2^na_n\) converge?

    8) Suppose that \(\displaystyle \lim_{n→∞}∣\frac{a_{n+1}}{a_n}∣=p.\) For which values of \(\displaystyle r>0\) is \(\displaystyle \sum_{n=1}^∞r^na_n\) guaranteed to converge?


    Solution: \(\displaystyle r<1/p\)

    9) Suppose that \(\displaystyle ∣\frac{a_{n+1}}{a_n}∣ ≤(n+1)^p\) for all \(\displaystyle n=1,2,…\) where \(\displaystyle p\) is a fixed real number. For which values of \(\displaystyle p\) is \(\displaystyle \sum_{n=1}^∞n!a_n\) guaranteed to converge?

    10) For which values of \(\displaystyle r>0\), if any, does \(\displaystyle \sum_{n=1}^∞r^{\sqrt{n}}\) converge? (Hint: \(\displaystyle sum_{n=1}^∞a_n=\sum_{k=1}^∞\sum_{n=k^2}^{(k+1)^2−1}a_n.)\)


    Solution: \(\displaystyle 0<r<1.\) Note that the ratio and root tests are inconclusive. Using the hint, there are \(\displaystyle 2k\) terms \(\displaystyle r^\sqrt{n}\) for \(\displaystyle k^2≤n<(k+1)^2\), and for \(\displaystyle r<1\) each term is at least \(\displaystyle r^k\). Thus, \(\displaystyle \sum_{n=1}^∞r^{\sqrt{n}}=\sum_{k=1}^∞\sum_{n=k^2}^{(k+1)^2−1}r^{\sqrt{n}} ≥\sum_{k=1}^∞2kr^k,\) which converges by the ratio test for \(\displaystyle r<1\). For \(\displaystyle r≥1\) the series diverges by the divergence test.

    11) Suppose that \(\displaystyle ∣\frac{a_{n+2}}{a_n}∣ ≤r<1\) for all \(\displaystyle n\). Can you conclude that \(\displaystyle \sum_{n=1}^∞a_n\) converges?

    12) Let \(\displaystyle a_n=2^{−[n/2]}\) where \(\displaystyle [x]\) is the greatest integer less than or equal to x. Determine whether \(\displaystyle \sum_{n=1}^∞a_n\) converges and justify your answer.


    Solution: One has \(\displaystyle a_1=1, a_2=a_3=1/2,…a_{2n}=a_{2n+1}=1/2^n\). The ratio test does not apply because \(\displaystyle a_{n+1}/a_n=1\) if \(\displaystyle n\) is even. However, \(\displaystyle a_{n+2}/a_n=1/2,\) so the series converges according to the previous exercise. Of course, the series is just a duplicated geometric series.

    Exercise \(\PageIndex{9}\)

    The following advanced exercises use a generalized ratio test to determine convergence of some series that arise in particular applications when tests in this chapter, including the ratio and root test, are not powerful enough to determine their convergence. The test states that if \(\displaystyle \lim_{n→∞}\frac{a_{2n}}{a_n}<1/2\), then \(\displaystyle \sum a_n\) converges, while if \(\displaystyle \lim_{n→∞}\frac{a_{2n+1}}{a_n}>1/2\), then \(\displaystyle \sum a_n\) diverges.

    1) Let \(\displaystyle a_n=\frac{1}{4}\frac{3}{6}\frac{5}{8}⋯\frac{2n−1}{2n+2}=\frac{1⋅3⋅5⋯(2n−1)}{2^n(n+1)!}\). Explain why the ratio test cannot determine convergence of \(\displaystyle \sum_{n=1}^∞a_n\). Use the fact that \(\displaystyle 1−1/(4k)\) is increasing \(\displaystyle k\) to estimate \(\displaystyle \lim_{n→∞}\frac{a_{2n}}{a_n}\).

    2) Let \(\displaystyle a_n=\frac{1}{1+x}\frac{2}{2+x}⋯\frac{n}{n+x}\frac{1}{n}=\frac{(n−1)!}{(1+x)(2+x)⋯(n+x).}\) Show that \(\displaystyle a_{2n}/a_n≤e^{−x/2}/2\). For which \(\displaystyle x>0\) does the generalized ratio test imply convergence of \(\displaystyle \sum_{n=1}^∞a_n\)? (Hint: Write \(\displaystyle 2a_{2n}/a_n\) as a product of \(\displaystyle n\) factors each smaller than \(\displaystyle 1/(1+x/(2n)).)\)


    Solution: \(\displaystyle a_{2n}/a_n=\frac{1}{2}⋅\frac{n+1}{n+1+x}\frac{n+2}{n+2+x}⋯\frac{2n}{2n+x}.\) The inverse of the \(\displaystyle kth\) factor is \(\displaystyle (n+k+x)/(n+k)>1+x/(2n)\) so the product is less than \(\displaystyle (1+x/(2n))^{−n}≈e^{−x/2}.\) Thus for \(\displaystyle x>0, \frac{a_{2n}}{a_n}≤\frac{1}{2}e^{−x/2}\). The series converges for \(\displaystyle x>0\).

    3) Let \(\displaystyle a_n=\frac{n^{lnn}}{(lnn)^n}.\) Show that \(\displaystyle \frac{a_{2n}}{a_n}→0\) as \(\displaystyle n→∞.\)

    4.6E: Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?