2.4E: Exercises
- Page ID
- 17372
This page is a draft and is under active development.
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)In Exercises \((2.4E.1)\) to \((2.4E.14)\), find a particular solution.
Exercise \(\PageIndex{1}\)
\(y''-3y'+2y=e^{3x}(1+x)\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{2}\)
\(y''-6y'+5y=e^{-3x}(35-8x)\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{3}\)
\(y''-2y'-3y=e^x(-8+3x)\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{4}\)
\(y''+2y'+y=e^{2x}(-7-15x+9x^2)\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{5}\)
\(y''+4y=e^{-x}(7-4x+5x^2)\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{6}\)
\(y''-y'-2y=e^x(9+2x-4x^2)\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{7}\)
\(y''-4y'-5y=-6xe^{-x}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{8}\)
\(y''-3y'+2y=e^x(3-4x)\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{9}\)
\(y''+y'-12y=e^{3x}(-6+7x)\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{10}\)
\(2y''-3y'-2y=e^{2x}(-6+10x)\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{11}\)
\(y''+2y'+y=e^{-x}(2+3x)\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{12}\)
\(y''-2y'+y=e^x(1-6x)\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{13}\)
\(y''-4y'+4y=e^{2x}(1-3x+6x^2)\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{14}\)
\(9y''+6y'+y=e^{-x/3}(2-4x+4x^2)\)
- Answer
-
Add texts here. Do not delete this text first.
In Exercises \((2.4E.15)\) to \((2.4E.19)\), find the general solution.
Exercise \(\PageIndex{15}\)
\(y''-3y'+2y=e^{3x}(1+x)\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{16}\)
\(y''-6y'+8y=e^x(11-6x)\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{17}\)
\( y''+6y'+9y=e^{2x}(3-5x)\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{18}\)
\(y''+2y'-3y=-16xe^x\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{19}\)
\(y''-2y'+y=e^x(2-12x)\)
- Answer
-
Add texts here. Do not delete this text first.
In Exercises \((2.4E.20)\) to \((2.4E.23)\), solve the initial value problem and plot the solution.
Exercise \(\PageIndex{20}\)
\(y''-4y'-5y=9e^{2x}(1+x), \quad y(0)=0,\quad y'(0)=-10\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{21}\)
\(y''+3y'-4y=e^{2x}(7+6x), \quad y(0)=2,\quad y'(0)=8\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{22}\)
\(y''+4y'+3y=-e^{-x}(2+8x), \quad y(0)=1,\quad y'(0)=2\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{23}\)
\(y''-3y'-10y=7e^{-2x}, \quad y(0)=1,\quad y'(0)=-17\)
- Answer
-
Add texts here. Do not delete this text first.
In Exercises \((2.4E.24)\) to \((2.4E.29)\), use the principle of superposition to find a particular solution.
Exercise \(\PageIndex{24}\)
\(y''+y'+y=xe^x+e^{-x}(1+2x)\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{25}\)
\(y''-7y'+12y=-e^x(17-42x)-e^{3x}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{26}\)
\(y''-8y'+16y=6xe^{4x}+2+16x+16x^2\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{27}\)
\(y''-3y'+2y=-e^{2x}(3+4x)-e^x\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{28}\)
\(y''-2y'+2y=e^x(1+x)+e^{-x}(2-8x+5x^2)\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{29}\)
\(y''+y=e^{-x}(2-4x+2x^2)+e^{3x}(8-12x-10x^2)\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{30}\)
(a) Prove that \(y\) is a solution of the constant coefficient equation
\begin{equation}\label{eq:2.4E.1}
ay''+by'+cy=e^{\alpha x}G(x)
\end{equation}
if and only if \(y=ue^{\alpha x}\), where \(u\) satisfies
\begin{equation}\label{eq:2.4E.2}
au''+p'(\alpha)u'+p(\alpha)u=G(x)
\end{equation}
and \(p(r)=ar^2+br+c\) is the characteristic polynomial of the complementary equation
\begin{eqnarray*}
ay''+by'+cy=0.
\end{eqnarray*}
For the rest of this exercise, let \(G\) be a polynomial. Give the requested proofs for the case where
\begin{eqnarray*}
G(x)=g_0+g_1x+g_2x^2+g_3x^3.
\end{eqnarray*}
(b) Prove that if \(e^{\alpha x}\) isn't a solution of the complementary equation then \eqref{eq:2.4E.2} has a particular solution of the form \(u_p=A(x)\), where \(A\) is a polynomial of the same degree as \(G\), as in Example \((2.4.4)\). Conclude that \eqref{eq:2.4E.1} has a particular solution of the form \(y_p=e^{\alpha x}A(x)\).
(c) Show that if \(e^{\alpha x}\) is a solution of the complementary equation and \(xe^{\alpha x}\) isn't, then \eqref{eq:2.4E.2} has a particular solution of the form \(u_p=xA(x)\), where \(A\) is a polynomial of the same degree as \(G\), as in Example \((2.4.5)\). Conclude that \eqref{eq:2.4E.1} has a particular solution of the form \(y_p=xe^{\alpha x}A(x)\).
(d) Show that if \(e^{\alpha x}\) and \(xe^{\alpha x}\) are both solutions of the complementary equation then \eqref{eq:2.4E.2} has a particular solution of the form \(u_p=x^2A(x)\), where \(A\) is a polynomial of the same degree as \(G\), and \(x^2A(x)\) can be obtained by integrating \(G/a\) twice, taking the constants of integration to be zero, as in Example \((2.4.6)\). Conclude that \eqref{eq:2.4E.1} has a particular solution of the form \(y_p=x^2e^{\alpha x}A(x)\).
- Answer
-
Add texts here. Do not delete this text first.
Exercises \((2.4E.31)\) to \((2.4E.36)\) treat the equations considered in Examples \((2.4.1)\) to \((2.4.6)\). Substitute the suggested form of \(y_p\) into the equation and equate the resulting coefficients of like functions on the two sides of the resulting equation to derive a set of simultaneous equations for the coefficients in \(y_p\). Then solve for the coefficients to obtain \(y_p\). Compare the work you've done with the work required to obtain the same results in Examples \((2.4.1)\) to \((2.4.6)\).
Exercise \(\PageIndex{31}\)
Compare with Example \((2.4.1)\):
\begin{eqnarray*}
y''-7y'+12y=4e^{2x};\quad y_p=Ae^{2x}
\end{eqnarray*}
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{32}\)
Compare with Example \((2.4.2)\):
\begin{eqnarray*}
y''-7y'+12y=5e^{4x};\quad y_p=Axe^{4x}
\end{eqnarray*}
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{33}\)
Compare with Example \((2.4.3)\):
\begin{eqnarray*}
y''-8y'+16y=2e^{4x};\quad y_p=Ax^2e^{4x}
\end{eqnarray*}
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{34}\)
Compare with Example \((2.4.4)\):
\begin{eqnarray*}
y''-3y'+2y=e^{3x}(-1+2x+x^2),\quad y_p=e^{3x}(A+Bx+Cx^2)
\end{eqnarray*}
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{35}\)
Compare with Example \((2.4.5)\):
\begin{eqnarray*}
y''-4y'+3y=e^{3x}(6+8x+12x^2),\quad y_p=e^{3x}(Ax+Bx^2+Cx^3)
\end{eqnarray*}
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{36}\)
Compare with Example \((2.4.6)\):
\begin{eqnarray*}
4y''+4y'+y=e^{-x/2}(-8+48x+144x^2),\quad y_p=e^{-x/2}(Ax^2+Bx^3+Cx^4)
\end{eqnarray*}
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{37}\)
Write \(y=ue^{\alpha x}\) to find the general solution.
(a) \(y''+2y'+y=\displaystyle{e^{-x}\over\sqrt x}\)
(b) \(y''+6y'+9y=e^{-3x}\ln x\)
(c) \(y''-4y'+4y=\displaystyle{e^{2x}\over1+x}\)
(d) \(4y''+4y'+y=\displaystyle{4e^{-x/2}\left({1\over x}+x\right)}\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{38}\)
Suppose \(\alpha\ne0\) and \(k\) is a positive integer. In most calculus books integrals like \(\int x^k e^{\alpha x}\,dx\) are evaluated by integrating by parts \(k\) times. This exercise presents another method. Let
\begin{eqnarray*}
y=\int e^{\alpha x}P(x)\,dx
\end{eqnarray*}
with
\begin{eqnarray*}
P(x)=p_0+p_1x+\cdots+p_kx^k, \mbox{\quad (where $p_k\ne0$)}.
\end{eqnarray*}
(a) Show that \(y=e^{\alpha x}u\), where
\begin{equation}\label{eq:2.4E.3}
u'+\alpha u=P(x).
\end{equation}
(b) Show that \eqref{eq:2.4E.3} has a particular solution of the form
\begin{eqnarray*}
u_p=A_0+A_1x+\cdots+A_kx^k,
\end{eqnarray*}
where \(A_k\), \(A_{k-1}\), \(\dots\), \(A_0\) can be computed successively by equating coefficients of \(x^k,x^{k-1}, \dots,1\) on both sides of the equation
\begin{eqnarray*}
u_p'+\alpha u_p=P(x).
\end{eqnarray*}
(c) Conclude that
\begin{eqnarray*}
\int e^{\alpha x}P(x)\,dx=\left(A_0+A_1x+\cdots+A_kx^k\right)e^{\alpha x} +c,
\end{eqnarray*}
where \(c\) is a constant of integration.
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{39}\)
Use the method of Exercise \((2.4E.38)\) to evaluate the integral.
(a) \( \int e^x(4+x)\,dx\)
(b) \(\int e^{-x}(-1+x^2)\,dx\)
(c) \(\int x^3e^{-2x}\,dx\)
(d) \(\int e^x(1+x)^2\,dx\)
(e) \(\int e^{3x}(-14+30x+27x^2)\,dx\)
(f) \(\int e^{-x}(1+6x^2-14x^3+3x^4)\,dx\)
- Answer
-
Add texts here. Do not delete this text first.
Exercise \(\PageIndex{40}\)
Use the method suggested in Exercise \((2.4E.38)\) to evaluate \(\int x^ke^{\alpha x}\,dx\), where \(k\) is an arbitrary positive integer and \(\alpha\ne0\).
- Answer
-
Add texts here. Do not delete this text first.