$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

# 4.1E: Exercises

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

## Exercise $$\PageIndex{1}$$

Tanks $$T_1$$ and $$T_2$$ contain $$50$$ gallons and $$100$$ gallons of salt solutions, respectively. A solution with $$2$$ pounds of salt per gallon is pumped into $$T_1$$ from an external source at $$1$$ gal/min, and a solution with $$3$$ pounds of salt per gallon is pumped into $$T_2$$ from an external source at $$2$$ gal/min. The solution from $$T_1$$ is pumped into $$T_2$$ at $$3$$ gal/min, and the solution from $$T_2$$ is pumped into $$T_1$$ at $$4$$ gal/min. $$T_1$$ is drained at $$2$$ gal/min and $$T_2$$ is drained at $$1$$ gal/min. Let $$Q_1(t)$$ and $$Q_2(t)$$ be the number of pounds of salt in $$T_1$$ and $$T_2$$, respectively, at time $$t>0$$. Derive a system of differential equations for $$Q_1$$ and $$Q_2$$. Assume that both mixtures are well stirred.

Add texts here. Do not delete this text first.

## Exercise $$\PageIndex{2}$$

Two $$500$$ gallon tanks $$T_1$$ and $$T_2$$ initially contain $$100$$ gallons each of salt solution. A solution with $$2$$ pounds of salt per gallon is pumped into $$T_1$$ from an external source at $$6$$ gal/min, and a solution with $$1$$ pound of salt per gallon is pumped into $$T_2$$ from an external source at $$5$$ gal/min. The solution from $$T_1$$ is pumped into $$T_2$$ at $$2$$ gal/min, and the solution from $$T_2$$ is pumped into $$T_1$$ at $$1$$ gal/min. Both tanks are drained at $$3$$ gal/min. Let $$Q_1(t)$$ and $$Q_2(t)$$ be the number of pounds of salt in $$T_1$$ and $$T_2$$, respectively, at time $$t>0$$. Derive a system of differential equations for $$Q_1$$ and $$Q_2$$ that's valid until a tank is about to overflow. Assume that both mixtures are well stirred.

Add texts here. Do not delete this text first.

## Exercise $$\PageIndex{3}$$

A mass $$m_1$$ is suspended from a rigid support on a spring $$S_1$$ with spring constant $$k_1$$ and damping constant $$c_1$$. A second mass $$m_2$$ is suspended from the first on a spring $$S_2$$ with spring constant $$k_2$$ and damping constant $$c_2$$, and a third mass $$m_3$$ is suspended from the second on a spring $$S_3$$ with spring constant $$k_3$$ and damping constant $$c_3$$. Let $$y_1=y_1(t)$$, $$y_2=y_2(t)$$, and $$y_3=y_3(t)$$ be the displacements of the three masses from their equilibrium positions at time $$t$$, measured positive upward. Derive a system of differential equations for $$y_1$$, $$y_2$$ and $$y_3$$, assuming that the masses of the springs are negligible and that vertical external forces $$F_1$$, $$F_2$$, and $$F_3$$ also act on the masses.

Add texts here. Do not delete this text first.

## Exercise $$\PageIndex{4}$$

Let $${\bf X}=x\,{\bf i}+y\,{\bf j}+z\,{\bf k}$$ be the position vector of an object with mass $$m$$, expressed in terms of a rectangular coordinate system with origin at Earth's center (Figure $$(4.1.3)$$). Derive a system of differential equations for $$x$$, $$y$$, and $$z$$, assuming that the object moves under Earth's gravitational force (given by Newton's law of gravitation, as in Example $$(4.1.3)$$ ) and a resistive force proportional to the speed of the object. Let $$\alpha$$ be the constant of proportionality.

Add texts here. Do not delete this text first.

## Exercise $$\PageIndex{5}$$

Rewrite the given system as a first order system.

(a)\begin{array}{lcc} x''' = f(t,x,y,y')\\ y'' =
g(t,y,y') \end{array}

(b)\begin{array}{lcl} u' = f(t,u,v,v',w')\\ v''=g(t,u,v,v',w)\\ w''=h(t,u,v,v',w,w')\end{array}

(c) $$y''' = f(t,y,y',y'')$$

(d) $$y^{(4)} = f(t,y)$$

(e) \begin{array}{lcc} x'' = f(t,x,y)\\ y'' = g(t,x,y) \end{array}

Add texts here. Do not delete this text first.

## Exercise $$\PageIndex{6}$$

Rewrite the system Equation $$(4.1.14)$$ of differential equations derived in Example $$(4.1.3)$$ as a first order system.

Add texts here. Do not delete this text first.

## Exercise $$\PageIndex{7}$$

Formulate a version of Euler's method (Section 3.1) for the numerical solution of the initial value problem

\begin{array}{rcl}
\end{array}

on an interval $$[t_0,b]$$.

Add texts here. Do not delete this text first.

## Exercise $$\PageIndex{8}$$

Formulate a version of the improved Euler method (Section 3.2) for the numerical solution of the initial value problem

\begin{array}{rcl}
on an interval $$[t_0,b]$$.