2.E: Basic Concepts of Sets (Exercises)
- Page ID
- 4911
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
Exercise \(\PageIndex{1}\): Set Operations
Let \(A = \{1, 5, 31, 56, 101\}\), \(B = \{22, 56, 5, 103, 87\}\), \(C = 41, 13, 7, 101, 48\}\), and \(D = \{1, 3, 5, 7...\}\)
Give the sets resulting from:
- \(A \cap B\)
- \(C \cup A\)
- \(C \cap D\)
- \((A \cup B) \cup (C \cup D)\)
- Answer
-
1. \(A \cap B =\{ 5, 56 \}\)
2. \(C \cup A=\{1, 5, 7, 13, 31, 41, 48, 56, 101\} \)
3. \(C \cap D = \{ 7, 13, 41, 101\} \)
4. \((A \cup B) \cup (C \cup D)\)
Exercise \(\PageIndex{2}\): True or False
- \(7 \in \{6, 7, 8, 9\}\)
- \(5 \notin \{6, 7, 8, 9\}\)
- \(\{2\} \nsubseteq \{1, 2\}\)
- \(\emptyset \nsubseteq \{\alpha, \beta, x\}\)
- \(\emptyset = \{\emptyset\}\)
- Answer
-
\( T, T, F, F, F\)
Exercise \(\PageIndex{3}\): Subsets
List all the subsets of:
- \(\{1, 2, 3\}\)
- \(\{\phi, \lambda, \Delta, \mu\}\)
- \(\{\emptyset\}\)
- Answer
-
1. \(\{\{1, 2, 3\}, \{1, 2\}, \{1, 3\}, \{ 2, 3\}, \{1\}, \{2\}, \{ 3\}, \emptyset \}\)
3. \(\{\{\emptyset\},\emptyset \}\)
Exercise \(\PageIndex{4}\): Venn Diagram
A survey of 100 university students found the following data on their food preferences:
- 54 preferred Italian cuisine
- 29 preferred Asian-style cooking
- 16 preferred both Italian and Asian-style foods
- 19 preferred both Asian-style and Indian dishes
- 10 preferred both Italian and Indian cuisines
- 5 liked them all
- 11 did not like any of the options
How many students preferred:
- Only Indian food?
- Only Italian food?
- Only one food?
Exercise \(\PageIndex{5}\): Symbols
Assume that the universal set is the set of all integers.
Let
\(A=\{-7,-5,-3,-1,1,3,5,7\} \)
\(B =\{ x \in {\bf Z}| x^2 <9 \} \)
\(C= \{2,3,4,5,6\}\)
\(D=\{x \in {\bf Z}| x \leq 9 \}\)
In each of the following fill in the blank with most appropriate symbol from \(\in, \notin, \subset, =,\neq,\subseteq\), so that resulting statement is true.
A-----D
3-----B
9-----D
{2}-----\(C^c\)
\(\emptyset\)-----D
A-----C
B-----C
C-----D
0-----\(A \cap D\)
0-----\(A \cup D\)
Exercise \(\PageIndex{6}\): Prove or disprove
Given subsets \(A,B,C\) of a universal set \(U\), prove the statements that are true and give counter examples to disprove those that are false.
- \( A-(B \cap C)=(A-B) \cup(A-C).\)
- If \( A \cap B= A \cap C\) then \(B= C\).
- If \( A \cup B= A \cup C\) then \(B= C\).
- \( A-(B - C)=(A-B)-C.\)
- If \(A \times B \subseteq C \times D\) then \(A\subseteq C\) and \( B \subseteq D.\)
- If \(A\subseteq C\) and \( B \subseteq D\) then \(A \times B \subseteq C \times D.\)
Exercise \(\PageIndex{7}\): Set operations
Let \(A = \{ r,e,a,s,o,n,i,g\}, B = \{m,a,t,h,e,t,i,c,l\} \) and \( C \) = the set of vowels. Calculate:
- \(A \cup B \cup C.\)
- \(A \cap B.\)
- \({C}^c\).
Exercise \(\PageIndex{8}\): Prove or disprove
Given subsets \(A,B,C\) of a universal set \(U\), prove the statements that are true and give counter examples to disprove those that are false.
- \(P(A \cup B) = P(A) \cup P(B).\)
- \(P(A \cap B) = P(A) \cap P(B).\)
- \(P(A^c)=(P(A))^c\)
- \(P(A - B) = P(A) - P(B).\)
Exercise \(\PageIndex{9}\): Equal Sets
Consider the following sets:
\(A=\{x \in \mathbb{Z}| x= 2m, m \in \mathbb{Z}\} \) and \(B=\{x \in \mathbb{Z}| x= 2(n-1), n \in \mathbb{Z}\} \).
Are \(A\) and \(B\) equal? Justify your answer.
Exercise \(\PageIndex{10}\): Product of Sets
Let \(A=\{1,3,5\} \), and
\(B =\{ a,b \} \).
Then
- Find \( A \times B\) and \(B \times A\).
- Are \(A \times B\) and \(B \times A\) equal? Justify your answer.