# 2.E: Basic Concepts of Sets (Exercises)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

##### Exercise $$\PageIndex{1}$$: Set Operations

Let $$A = \{1, 5, 31, 56, 101\}$$, $$B = \{22, 56, 5, 103, 87\}$$, $$C = 41, 13, 7, 101, 48\}$$, and $$D = \{1, 3, 5, 7...\}$$

Give the sets resulting from:

1. $$A \cap B$$
2. $$C \cup A$$
3. $$C \cap D$$
4. $$(A \cup B) \cup (C \cup D)$$

1. $$A \cap B =\{ 5, 56 \}$$

2. $$C \cup A=\{1, 5, 7, 13, 31, 41, 48, 56, 101\}$$

3. $$C \cap D = \{ 7, 13, 41, 101\}$$

4. $$(A \cup B) \cup (C \cup D)$$

##### Exercise $$\PageIndex{2}$$: True or False
1. $$7 \in \{6, 7, 8, 9\}$$
2. $$5 \notin \{6, 7, 8, 9\}$$
3. $$\{2\} \nsubseteq \{1, 2\}$$
4. $$\emptyset \nsubseteq \{\alpha, \beta, x\}$$
5. $$\emptyset = \{\emptyset\}$$

$$T, T, F, F, F$$

##### Exercise $$\PageIndex{3}$$: Subsets

List all the subsets of:

1. $$\{1, 2, 3\}$$
2. $$\{\phi, \lambda, \Delta, \mu\}$$
3. $$\{\emptyset\}$$

1. $$\{\{1, 2, 3\}, \{1, 2\}, \{1, 3\}, \{ 2, 3\}, \{1\}, \{2\}, \{ 3\}, \emptyset \}$$

3. $$\{\{\emptyset\},\emptyset \}$$

##### Exercise $$\PageIndex{4}$$: Venn Diagram

A survey of 100 university students found the following data on their food preferences:

• 54 preferred Italian cuisine
• 29 preferred Asian-style cooking
• 16 preferred both Italian and Asian-style foods
• 19 preferred both Asian-style and Indian dishes
• 10 preferred both Italian and Indian cuisines
• 5 liked them all
• 11 did not like any of the options

How many students preferred:

1. Only Indian food?
2. Only Italian food?
3. Only one food?
##### Exercise $$\PageIndex{5}$$: Symbols

Assume that the universal set is the set of all integers.
Let
$$A=\{-7,-5,-3,-1,1,3,5,7\}$$
$$B =\{ x \in {\bf Z}| x^2 <9 \}$$
$$C= \{2,3,4,5,6\}$$
$$D=\{x \in {\bf Z}| x \leq 9 \}$$

In each of the following fill in the blank with most appropriate symbol from $$\in, \notin, \subset, =,\neq,\subseteq$$, so that resulting statement is true.

A-----D
3-----B
9-----D

{2}-----$$C^c$$
$$\emptyset$$-----D
A-----C
B-----C
C-----D
0-----$$A \cap D$$
0-----$$A \cup D$$

##### Exercise $$\PageIndex{6}$$: Prove or disprove

Given subsets $$A,B,C$$ of a universal set $$U$$, prove the statements that are true and give counter examples to disprove those that are false.

1. $$A-(B \cap C)=(A-B) \cup(A-C).$$
2. If $$A \cap B= A \cap C$$ then $$B= C$$.
3. If $$A \cup B= A \cup C$$ then $$B= C$$.
4. $$A-(B - C)=(A-B)-C.$$
5. If $$A \times B \subseteq C \times D$$ then $$A\subseteq C$$ and $$B \subseteq D.$$
6. If $$A\subseteq C$$ and $$B \subseteq D$$ then $$A \times B \subseteq C \times D.$$
##### Exercise $$\PageIndex{7}$$: Set operations

Let $$A = \{ r,e,a,s,o,n,i,g\}, B = \{m,a,t,h,e,t,i,c,l\}$$ and $$C$$ = the set of vowels. Calculate:

1. $$A \cup B \cup C.$$
2. $$A \cap B.$$
3. $${C}^c$$.
##### Exercise $$\PageIndex{8}$$: Prove or disprove

Given subsets $$A,B,C$$ of a universal set $$U$$, prove the statements that are true and give counter examples to disprove those that are false.

1. $$P(A \cup B) = P(A) \cup P(B).$$
2. $$P(A \cap B) = P(A) \cap P(B).$$
3. $$P(A^c)=(P(A))^c$$
4. $$P(A - B) = P(A) - P(B).$$
##### Exercise $$\PageIndex{9}$$: Equal Sets

Consider the following sets:

$$A=\{x \in \mathbb{Z}| x= 2m, m \in \mathbb{Z}\}$$ and $$B=\{x \in \mathbb{Z}| x= 2(n-1), n \in \mathbb{Z}\}$$.

Are $$A$$ and $$B$$ equal? Justify your answer.

##### Exercise $$\PageIndex{10}$$: Product of Sets

Let $$A=\{1,3,5\}$$, and
$$B =\{ a,b \}$$.

Then

1. Find $$A \times B$$ and $$B \times A$$.
2. Are $$A \times B$$ and $$B \times A$$ equal? Justify your answer.

This page titled 2.E: Basic Concepts of Sets (Exercises) is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Pamini Thangarajah.