Skip to main content
Mathematics LibreTexts

4.E: Basic Concepts of Euclidean Geometry (Exercises)

  • Page ID
    4898
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Exercise \(\PageIndex{1}\): Similarity

    Assess whether each of the following statement is true or false and justify your answer.

    1. Any two equilateral triangles are similar.
    2. Any two isosceles triangles are similar.
    3. Any two squares are similar.
    4. Any two rectangles are similar.
    5. Any two pentagons are similar.
    6. Any two polygons are similar.

    Exercise \(\PageIndex{2}\): Area

    Starting with the formula for the area of a triangle, show how to obtain the formula for the area of a parallelogram and the area of a hexagon.

    Exercise \(\PageIndex{3}\): Interior angle

    Find the general formula for the center angle in a regular n-sided polygon? Justify your answer.

    Find the general formula for the exterior angle in a regular n-sided polygon? Justify your answer.

    Exercise \(\PageIndex{4}\): Triangles

    Prove or disprove the following: an equilateral triangle is an isosceles triangle.

    explain why an equilateral triangle is not a scalene triangle?

    Exercise \(\PageIndex{5}\): True or False

    Explain why the following statements below are true.

    1. A square is a rectangle.
    2. A rectangle is a parallelogram.
    3. A square is a kite.
    4. A parallelogram is a trapezoid.

    Exercise \(\PageIndex{6}\): Angles

    Given cutout sheets with angles \(40^{\circ}, 55^{\circ }\) and \(85^{\circ}\). By adding or subtracting angles, construct other angles that measure \(15^{\circ}, 30^{\circ}, 70^{\circ}, 95^{\circ} \)and \(100^{\circ}.\)

    Can you construct an angle that measures \( 75^{\circ}? \)Explain how or say why not.

    Exercise \(\PageIndex{7}\): Converse of the Pythagorean Theorem

    State the statement for the converse of the Pythagorean Theorem. Is this statement true or false? Justify your answer.

    Exercise \(\PageIndex{8}\): Venn diagram

    Create a Venn diagram to illustrate the types of quadrilaterals, listed in this section.

    Exercise \(\PageIndex{9}\): Parallelogram

    Let \((a; b); ((0; c); (d:e); (f; 0)\) be vertices of a quadrilateral. Show that if you take the midpoints of any quadrilateral and connect them in turn, you will always get a parallelogram.

    Exercise \(\PageIndex{10}\): Venn Triangles

    Express the relationship between scalene, isosceles and equilateral triangles with Venn diagram.

    Exercise \(\PageIndex{11}\): Angles

    Consider the figure:

    Given that \( a= 47^{\circ}, \) and \(c= 55^{circ}.\)

    Find other listed angles.

    Exercise \(\PageIndex{12}\):

    Refer to the cube picture above. By Illuyanka (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons

    Name the following:

    1.Two parallel line segments.
    2.Two line segments that do not lie in the same plane. 3.Two intersecting line segments. 4.Three concurrent line segments that do not lie in the same plane. 5.Two skew line segments. 6.A pair of supplementary angles. 7.A pair of perpendicular line segments.

    Exercise \(\PageIndex{13}\): Inner Circle

    Find the area between the perimeter of this square and the unit circle.

    alt

    Answer

    \(1- \pi\)

    Exercise \(\PageIndex{14}\): Outer Circle

    Find the area between the perimeter of the unit circle and the triangle created from connecting the points \((0,1), (−\frac{4}{5}, −\frac{3}{5}) \)and \(\displaystyle (\frac{4}{5}, −\frac{3}{5}) \), as seen in the following figure.

    alt

    Answer

    (\displaystyle π−\frac{32}{25}\)

    Exercise \(\PageIndex{15}\): Reuleaux triangle

    The Reuleaux triangle consists of an equilateral triangle and three regions, each of them bounded by a side of the triangle and an arc of a circle of radius \(s \) centered at the opposite vertex of the triangle. Show that the area of the Reuleaux triangle in the following figure of side length \(s\) is \(\frac{s^2}{2}(\pi - \sqrt{3})\).

    An equilateral triangle with additional regions consisting of three arcs of a circle with radius equal to the length of the side of the triangle. These arcs connect two adjacent vertices, and the radius is taken from the opposite vertex.

    Exercise \(\PageIndex{16}\):lunes of Alhazen

    Show that the area of the lunes of Alhazen, the two blue lunes in the following figure, is the same as the area of the right triangle ABC. The outer boundaries of the lunes are semicircles of diameters \(AB\) and \(AC\) respectively, and the inner boundaries are formed by the circumcircle of the triangle \(ABC\).

    A right triangle with points A, B, and C. Point B has the right angle. There are two lunes drawn from A to B and from B to C with outer diameters AB and AC, respectively, and with the inner boundaries formed by the circumcircle of the triangle ABC.

    By Illuyanka (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons

    Exercises 13-16 are from

    Gilbert Strang (MIT) and Edwin “Jed” Herman (Harvey Mudd) with many contributing authors. This content by OpenStax is licensed with a CC-BY-SA-NC 4.0 license. Download for free at http://cnx.org.


    This page titled 4.E: Basic Concepts of Euclidean Geometry (Exercises) is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Pamini Thangarajah.

    • Was this article helpful?