Skip to main content
Mathematics LibreTexts

5. Egyptian Pizza

  • Page ID
  • This page is a draft and is under active development. 

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Pizza Fair & Square

    Grade 5 / Math & Art Integration

    ~ 1.5 Math Blocks

    Big Ideas/Rationale/Essential Understandings/Inquiry

    Number Sense

    Number sense is an intuition about numbers. It develops when students connect numbers to their own real-life experiences and when students use benchmarks and referents. Number sense can be developed by providing rich mathematical tasks that allow students to make connections to their experiences and their previous learning. (Program of Studies: Mathematics)


    Program of Studies: Mathematics Kindergarten to Grade 12 General Outcome: Develop number sense.

    Specific Outcomes: 8. Demonstrate an understanding of fractions less than or equal to one by using concrete, pictorial and symbolic representation to:

    • Name and record fractions for the parts of a whole or a set
    • Compare and order fractions
    • Model and explain that different wholes, two identical fractions may not represent the same quantity
    • Provide examples of where fractions are used
    • [C, CN, PS, R, V]


    What to look for:

    • Procedural Knowledge – Students can identify, extend, and create Egyptian fractions
    • Problem Solving Skills – Students can use different strategies to create and solve Egyptian fraction problems



    Conceptual Understanding: Demonstrates and explains:

    Procedural Knowledge:

    Identifies, describes,


    Solving Skills: Creates and solves problems

    Communication: Records and explains reasoning and



    Egyptian fraction

    rule Using manipulatives to show understanding

    extends the concept of Egyptian fractions to solve puzzle

    using appropriate strategies - equally dividing parts, following a ‘1/n strategy’

    procedures clearly and completely, including appropriate terminology

    * For the assessment above use approved levels, symbols, or numeric ratings.

    Teacher involvement:

    • Watch an interactive math story about fractions for a recap:
    • The teacher will walk around and visit pairs/groups to check up on progress and discuss their strategies (implementing differentiation).
    • The teacher will use the rubric as a formative assessment.

    Differentiation for Learners

    • For all students, especially ELL (English Language Learners) students, working with partners and group discussions will provide an opportunity for students to learn from each other, and a deeper understanding of appropriate strategies to use.
    • For all students, especially ELL students and visual learners, clear step-by-step oral instructions along with a visual demonstration of the instructions will support their understanding (examples of visual artifacts shown below). Using manipulatives and other resources are excellent ways of representing patterns visually.
    • Manipulatives: Magnetic Fraction Circles, Plastic Fraction Circles, etc.