Skip to main content
Mathematics LibreTexts

11.7: Stokes' Theorem

  • Page ID
    144364
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    1. Use Stokes' theorem to evaluate \(\displaystyle \iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}\), where \(\mathbf{F}(x, y, z) = xy\mathbf{i} - z\mathbf{j}\), and where \(S\) is the surface of the unit cube \([0, 1] \times [0, 1] \times [0, 1]\) with the bottom face \(z = 0\) removed and normals oriented outward.
       
    2. Use Stokes' theorem to evaluate \(\displaystyle \iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}\), where \(\mathbf{F}(x, y, z) = xy\mathbf{i} + x^2\mathbf{j} + z^2\mathbf{k}\), and where \(S\) is the portion of the surface \(z = x^2 + y^2\) with \(z \leq y\) and normals oriented downward.
       
    3. Use Stokes' theorem to evaluate \(\displaystyle \int_C \mathbf{F} \cdot d\mathbf{r}\), where \(\mathbf{F}(x, y, z) = y^2\mathbf{i} + z^2\mathbf{j} + x^2\mathbf{k}\), and where \(C\) is the boundary of the plane \(x + y + z = 1\) restricted in to the first octant oriented counterclockwise.

    11.7: Stokes' Theorem is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?