Skip to main content
Mathematics LibreTexts

6.4E: The Other Trigonometric Functions (Exercises)

  • Page ID
    145591
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Section 5.4 Exercise

    1. If \(\theta =\dfrac{\pi \; }{4}\), find exact values for \(\sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)\;\).
    2. If \(\theta =\dfrac{7\pi \; }{4}\), find exact values for \(\sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)\;\).
    3. If \(\theta =\dfrac{5\pi \; }{6}\), find exact values for \(\sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)\;\).
    4. If \(\theta =\dfrac{\pi \; }{6}\), find exact values for \(\sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)\).
    5. If \(\theta =\dfrac{2\pi \; }{3}\), find exact values for \(\sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)\;\).
    6. If \(\theta =\dfrac{4\pi \; }{3}\), find exact values for \(\sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)\).
    7. Evaluate: a. \(\sec \left(135{}^\circ \right)\) b. \(\csc \left(210{}^\circ \right)\) c. \(\tan \left(60{}^\circ \right)\) d. \(\cot \left(225{}^\circ \right)\)
    8. Evaluate: a. \(\sec \left(30{}^\circ \right)\) b. \(\csc \left(315{}^\circ \right)\) c. \(\tan \left(135{}^\circ \right)\) d. \(\cot \left(150{}^\circ \right)\)
    9. If \(\sin \left(\theta \right)=\dfrac{3}{4}\), and \(\theta\) is in quadrant II, find \(\cos \left(\theta \right),\; \sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)\).
    10. If \(\sin \left(\theta \right)=\dfrac{2}{7}\), and \(\theta\) is in quadrant II, find \(\cos \left(\theta \right),\; \sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)\).
    11. If \(\cos \left(\theta \right)=-\dfrac{1}{3}\), and \(\theta\) is in quadrant III, find \(\sin \left(\theta \right),\; \sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)\).
    12. If \(\cos \left(\theta \right)=\dfrac{1}{5}\), and \(\theta\) is in quadrant I, find \(\sin \left(\theta \right),\; \sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)\).
    13. If \(\tan \left(\theta \right)=\dfrac{12}{5}\), and \(0\le \theta <\dfrac{\pi }{2}\), find \(\sin \left(\theta \right),\; \cos \left(\theta \right),\sec \left(\theta \right),\; \csc \left(\theta \right),\; \cot \left(\theta \right)\).
    14. If \(\tan \left(\theta \right)=4\), and \(0\le \theta <\dfrac{\pi }{2}\), find \(\sin \left(\theta \right),\; \cos \left(\theta \right),\sec \left(\theta \right),\; \csc \left(\theta \right),\; \cot \left(\theta \right)\).
    15. Use a calculator to find sine, cosine, and tangent of the following values:
      a. 0.15
      b. 4
      c. 70\(\mathrm{{}^\circ}\)
      d. 283\(\mathrm{{}^\circ}\)
    16. Use a calculator to find sine, cosine, and tangent of the following values:
      a. 0.5
      b. 5.2
      c. 10\(\mathrm{{}^\circ}\)
      d. 195\(\mathrm{{}^\circ}\)

    Simplify each of the following to an expression involving a single trig function with no fractions.

    17. \(\csc (t)\tan \left(t\right)\)

    18. \(\cos (t)\csc \left(t\right)\)

    19. \(\dfrac{\sec \left(t\right)}{\csc \left(t\right)\; }\)

    20. \(\dfrac{\cot \left(t\right)}{\csc \left(t\right)}\)

    21. \(\dfrac{\sec \left(t\right)-\cos \left(t\right)}{\sin \left(t\right)}\)

    22. \(\dfrac{\tan \left(t\right)}{\sec \left(t\right)-\cos \left(t\right)}\)

    23. \(\dfrac{1+\cot \left(t\right)}{1+\tan \left(t\right)}\)

    24. \(\dfrac{1+\sin \left(t\right)}{1+\csc \left(t\right)}\)

    25. \(\dfrac{\sin ^{2} \left(t\right)+\cos ^{2} \left(t\right)}{\cos ^{2} \left(t\right)}\)

    26. \(\dfrac{1-\sin ^{2} \left(t\right)}{\sin ^{2} \left(t\right)}\)

    Prove the identities.

    27. \(\dfrac{\sin ^{2} \left(\theta \right)}{1+\cos \left(\theta \right)} =1-\cos \left(\theta \right)\)

    28. \(\text{tan}^{2} (t) = \dfrac{1}{\text{cos}^2 (t)} - 1\)

    29. \(\text{sec}(a) - \text{cos}(a) = \text{sin}(a) \text{tan}(a)\)

    30. \(\dfrac{1 + \text{tan}^2(b)}{\text{tan}^2(b)} = \text{csc}^2(b)\)

    31. \(\dfrac{\text{csc}^2 (x) - \text{sin}^2 (x)}{\text{csc} (x) + \text{sin} (x)} = \text{cos} (x) \text{cot} (x)\)

    32. \(\dfrac{\text{sin} (\theta) - \text{cos} (\theta)}{\text{sec}(\theta) - \text{csc} (\theta)} = \text{sin} (\theta) \text{cos} (\theta)\)

    33. \(\dfrac{\text{csc}^2 (\alpha) - 1}{\text{csc}^2 (\alpha) - \text{csc} (\alpha)} = 1 + \text{sin} (\alpha)\)

    34. \(1 + \text{cot} (x) = \text{cos} (x) (\text{sec}(x) + \text{csc} (x))\)

    35. \(\dfrac{1 + \text{cos} (u)}{\text{sin} (u)} = \dfrac{\text{sin} (u)}{1 - \text{cos}(u)}\)

    36. \(2 \text{sec}^2 (t) = \dfrac{1 - \text{sin}(t)}{\text{cos}^2 (t)} + \dfrac{1}{1 -  \text{sin} (t)}\)

    37. \(\dfrac{\text{sin}^4 (\gamma) - \text{cos}^4 (\gamma)}{\text{sin} (\gamma) - \text{cos} (\gamma)} = \text{sin} (\gamma) + \text{cos} (\gamma)\)

    38. \(\dfrac{(1 + \text{cos}(A))(1 - \text{cos} (A))}{\text{sin} (A)} = \text{sin} (A)\)

    Answer

    1. \(\text{sec} (\theta) = \sqrt{2}\), \(\text{csc} (\theta) = \sqrt{2}\), \(\text{tan} (\theta) = 1\), \(\text{cot} (\theta) = 1\)

    3. \(\text{sec} (\theta) = -\dfrac{2\sqrt{3}}{3}\), \(\text{csc} (\theta) = 2\), \(\text{tan} (\theta) = -\dfrac{\sqrt{3}}{3}\), \(\text{cot} (\theta) = -\sqrt{3}\)

    5. \(\text{sec} (\theta) = -2\), \(\text{csc} (\theta) = \dfrac{2\sqrt{3}}{3}\), \(\text{tan} (\theta) = -\sqrt{3}\), \(\text{cot} (\theta) = -\dfrac{\sqrt{3}}{3}\)

    7. a. \(\text{sec} (135^{\circ}) = -\sqrt{2}\)
    b. \(\text{csc} (210^{\circ}) = -2\)
    c. \(\text{tan} (60^{\circ}) = \sqrt{3}\)
    d. \(\text{cot} (225^{\circ}) = 1\)

    9. \(\cos(\theta) = -\dfrac{\sqrt{7}}{4}\), \(\sec (\theta) = -\dfrac{4\sqrt{7}}{7}\), \(\csc(\theta) = \dfrac{4}{3}\), \(\tan(\theta) = -\dfrac{3\sqrt{7}}{7}\), \(\cot(\theta) = -\dfrac{\sqrt{7}}{3}\)

    11. \(\sin(\theta) = -\dfrac{2\sqrt{2}}{3}\), \(\csc(\theta) = -\dfrac{3\sqrt{2}}{3}\), \(\sec(\theta) = -3\), \(\tan(\theta) = 2\sqrt{2}\), \(\cot(\theta) = \dfrac{\sqrt{2}}{4}\)

    13. \(\sin(\theta) = \dfrac{12}{13}\), \(\cos(\theta) = \dfrac{5}{13}\), \(\sec(\theta) = \dfrac{13}{5}\), \(\csc(\theta) = \dfrac{13}{12}\), \(\cot(\theta) = \dfrac{5}{12}\)

    15. a. sin(0.15) = 0.1494 cos(0.15) = 0.9888 tan(0.15) = 0.1511
    b. sin(4) = -0.7568 cos(4) = -0.6536 tan(4) = 1.1578
    c. sin(\(70^{\circ}\)) = 0.9397 cos(\(70^{\circ}\)) = 0.3420 tan(\(70^{\circ}\)) = 2.7475
    d. sin(\(283^{\circ}\)) = -0.9744 cos(\(283^{\circ}\)) = 0.2250 tan(\(283^{\circ}\)) = -4.3315

    17. sec(\(t\))

    19. tan(\(t\))

    21. tan(\(t\))

    23. cot(\(t\))

    25. \((\sec(t))^2\)


    This page titled 6.4E: The Other Trigonometric Functions (Exercises) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by David Lippman & Melonie Rasmussen (The OpenTextBookStore) via source content that was edited to the style and standards of the LibreTexts platform.