# 6.4E: The Other Trigonometric Functions (Exercises)

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Section 5.4 Exercise

1. If $$\theta =\dfrac{\pi \; }{4}$$, find exact values for $$\sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)\;$$.
2. If $$\theta =\dfrac{7\pi \; }{4}$$, find exact values for $$\sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)\;$$.
3. If $$\theta =\dfrac{5\pi \; }{6}$$, find exact values for $$\sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)\;$$.
4. If $$\theta =\dfrac{\pi \; }{6}$$, find exact values for $$\sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)$$.
5. If $$\theta =\dfrac{2\pi \; }{3}$$, find exact values for $$\sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)\;$$.
6. If $$\theta =\dfrac{4\pi \; }{3}$$, find exact values for $$\sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)$$.
7. Evaluate: a. $$\sec \left(135{}^\circ \right)$$ b. $$\csc \left(210{}^\circ \right)$$ c. $$\tan \left(60{}^\circ \right)$$ d. $$\cot \left(225{}^\circ \right)$$
8. Evaluate: a. $$\sec \left(30{}^\circ \right)$$ b. $$\csc \left(315{}^\circ \right)$$ c. $$\tan \left(135{}^\circ \right)$$ d. $$\cot \left(150{}^\circ \right)$$
9. If $$\sin \left(\theta \right)=\dfrac{3}{4}$$, and $$\theta$$ is in quadrant II, find $$\cos \left(\theta \right),\; \sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)$$.
10. If $$\sin \left(\theta \right)=\dfrac{2}{7}$$, and $$\theta$$ is in quadrant II, find $$\cos \left(\theta \right),\; \sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)$$.
11. If $$\cos \left(\theta \right)=-\dfrac{1}{3}$$, and $$\theta$$ is in quadrant III, find $$\sin \left(\theta \right),\; \sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)$$.
12. If $$\cos \left(\theta \right)=\dfrac{1}{5}$$, and $$\theta$$ is in quadrant I, find $$\sin \left(\theta \right),\; \sec \left(\theta \right),\csc \left(\theta \right),\; \tan \left(\theta \right),\; \cot \left(\theta \right)$$.
13. If $$\tan \left(\theta \right)=\dfrac{12}{5}$$, and $$0\le \theta <\dfrac{\pi }{2}$$, find $$\sin \left(\theta \right),\; \cos \left(\theta \right),\sec \left(\theta \right),\; \csc \left(\theta \right),\; \cot \left(\theta \right)$$.
14. If $$\tan \left(\theta \right)=4$$, and $$0\le \theta <\dfrac{\pi }{2}$$, find $$\sin \left(\theta \right),\; \cos \left(\theta \right),\sec \left(\theta \right),\; \csc \left(\theta \right),\; \cot \left(\theta \right)$$.
15. Use a calculator to find sine, cosine, and tangent of the following values:
a. 0.15
b. 4
c. 70$$\mathrm{{}^\circ}$$
d. 283$$\mathrm{{}^\circ}$$
16. Use a calculator to find sine, cosine, and tangent of the following values:
a. 0.5
b. 5.2
c. 10$$\mathrm{{}^\circ}$$
d. 195$$\mathrm{{}^\circ}$$

Simplify each of the following to an expression involving a single trig function with no fractions.

17. $$\csc (t)\tan \left(t\right)$$

18. $$\cos (t)\csc \left(t\right)$$

19. $$\dfrac{\sec \left(t\right)}{\csc \left(t\right)\; }$$

20. $$\dfrac{\cot \left(t\right)}{\csc \left(t\right)}$$

21. $$\dfrac{\sec \left(t\right)-\cos \left(t\right)}{\sin \left(t\right)}$$

22. $$\dfrac{\tan \left(t\right)}{\sec \left(t\right)-\cos \left(t\right)}$$

23. $$\dfrac{1+\cot \left(t\right)}{1+\tan \left(t\right)}$$

24. $$\dfrac{1+\sin \left(t\right)}{1+\csc \left(t\right)}$$

25. $$\dfrac{\sin ^{2} \left(t\right)+\cos ^{2} \left(t\right)}{\cos ^{2} \left(t\right)}$$

26. $$\dfrac{1-\sin ^{2} \left(t\right)}{\sin ^{2} \left(t\right)}$$

Prove the identities.

27. $$\dfrac{\sin ^{2} \left(\theta \right)}{1+\cos \left(\theta \right)} =1-\cos \left(\theta \right)$$

28. $$\text{tan}^{2} (t) = \dfrac{1}{\text{cos}^2 (t)} - 1$$

29. $$\text{sec}(a) - \text{cos}(a) = \text{sin}(a) \text{tan}(a)$$

30. $$\dfrac{1 + \text{tan}^2(b)}{\text{tan}^2(b)} = \text{csc}^2(b)$$

31. $$\dfrac{\text{csc}^2 (x) - \text{sin}^2 (x)}{\text{csc} (x) + \text{sin} (x)} = \text{cos} (x) \text{cot} (x)$$

32. $$\dfrac{\text{sin} (\theta) - \text{cos} (\theta)}{\text{sec}(\theta) - \text{csc} (\theta)} = \text{sin} (\theta) \text{cos} (\theta)$$

33. $$\dfrac{\text{csc}^2 (\alpha) - 1}{\text{csc}^2 (\alpha) - \text{csc} (\alpha)} = 1 + \text{sin} (\alpha)$$

34. $$1 + \text{cot} (x) = \text{cos} (x) (\text{sec}(x) + \text{csc} (x))$$

35. $$\dfrac{1 + \text{cos} (u)}{\text{sin} (u)} = \dfrac{\text{sin} (u)}{1 - \text{cos}(u)}$$

36. $$2 \text{sec}^2 (t) = \dfrac{1 - \text{sin}(t)}{\text{cos}^2 (t)} + \dfrac{1}{1 - \text{sin} (t)}$$

37. $$\dfrac{\text{sin}^4 (\gamma) - \text{cos}^4 (\gamma)}{\text{sin} (\gamma) - \text{cos} (\gamma)} = \text{sin} (\gamma) + \text{cos} (\gamma)$$

38. $$\dfrac{(1 + \text{cos}(A))(1 - \text{cos} (A))}{\text{sin} (A)} = \text{sin} (A)$$

1. $$\text{sec} (\theta) = \sqrt{2}$$, $$\text{csc} (\theta) = \sqrt{2}$$, $$\text{tan} (\theta) = 1$$, $$\text{cot} (\theta) = 1$$

3. $$\text{sec} (\theta) = -\dfrac{2\sqrt{3}}{3}$$, $$\text{csc} (\theta) = 2$$, $$\text{tan} (\theta) = -\dfrac{\sqrt{3}}{3}$$, $$\text{cot} (\theta) = -\sqrt{3}$$

5. $$\text{sec} (\theta) = -2$$, $$\text{csc} (\theta) = \dfrac{2\sqrt{3}}{3}$$, $$\text{tan} (\theta) = -\sqrt{3}$$, $$\text{cot} (\theta) = -\dfrac{\sqrt{3}}{3}$$

7. a. $$\text{sec} (135^{\circ}) = -\sqrt{2}$$
b. $$\text{csc} (210^{\circ}) = -2$$
c. $$\text{tan} (60^{\circ}) = \sqrt{3}$$
d. $$\text{cot} (225^{\circ}) = 1$$

9. $$\cos(\theta) = -\dfrac{\sqrt{7}}{4}$$, $$\sec (\theta) = -\dfrac{4\sqrt{7}}{7}$$, $$\csc(\theta) = \dfrac{4}{3}$$, $$\tan(\theta) = -\dfrac{3\sqrt{7}}{7}$$, $$\cot(\theta) = -\dfrac{\sqrt{7}}{3}$$

11. $$\sin(\theta) = -\dfrac{2\sqrt{2}}{3}$$, $$\csc(\theta) = -\dfrac{3\sqrt{2}}{3}$$, $$\sec(\theta) = -3$$, $$\tan(\theta) = 2\sqrt{2}$$, $$\cot(\theta) = \dfrac{\sqrt{2}}{4}$$

13. $$\sin(\theta) = \dfrac{12}{13}$$, $$\cos(\theta) = \dfrac{5}{13}$$, $$\sec(\theta) = \dfrac{13}{5}$$, $$\csc(\theta) = \dfrac{13}{12}$$, $$\cot(\theta) = \dfrac{5}{12}$$

15. a. sin(0.15) = 0.1494 cos(0.15) = 0.9888 tan(0.15) = 0.1511
b. sin(4) = -0.7568 cos(4) = -0.6536 tan(4) = 1.1578
c. sin($$70^{\circ}$$) = 0.9397 cos($$70^{\circ}$$) = 0.3420 tan($$70^{\circ}$$) = 2.7475
d. sin($$283^{\circ}$$) = -0.9744 cos($$283^{\circ}$$) = 0.2250 tan($$283^{\circ}$$) = -4.3315

17. sec($$t$$)

19. tan($$t$$)

21. tan($$t$$)

23. cot($$t$$)

25. $$(\sec(t))^2$$

This page titled 6.4E: The Other Trigonometric Functions (Exercises) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by David Lippman & Melonie Rasmussen (The OpenTextBookStore) via source content that was edited to the style and standards of the LibreTexts platform.