3.1E: Power Functions (Exercises)
- Page ID
- 127022
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Find the long run behavior of each function as \(x \to \infty\) and \(x \to -\infty\)
1. \(f(x)=x^{4}\)
2. \(f(x)=x^{6}\)
3. \(f(x)=x^{3}\)
4. \(f(x)=x^{5}\)
5. \(f(x)=-x^{2}\)
6. \(f(x)=-x^{4}\)
7. \(f(x)=-x^{7}\)
8. \(f(x)=-x^{9}\)
Find the degree and leading coefficient of each polynomial
9. \(4x^{7}\)
10. \(5x^{6}\)
11. \(5-x^{2}\)
12. \(6+3x-4x^{3}\)
13. \(-2x^{4} - 3x^{2} + x-1\)
14. \(6x^{5} -2x^{4} + x^{2} + 3\)
15. \((2x+3)(x-4)(3x+1)\)
16. \((3x+1)(x+1)(4x+3)\)
Find the long run behavior of each function as \(x \to \infty\) and \(x \to -\infty\)
17. \(-2x^{4} - 3x^{2} + x-1\)
18. \(6x^{5} -2x^{4} + x^{2} + 3\)
19. \(3x^{2} + x-2\)
20. \(-2x^{3} + x^{2} -x+3\)
21. What is the maximum number of \(x\)-intercepts and turning points for a polynomial of degree 5?
22. What is the maximum number of \(x\)-intercepts and turning points for a polynomial of degree 8?
What is the least possible degree of the polynomial function shown in each graph?
23.
24
.25.
26.
27.
28.
29.
30. 
Find the vertical and horizontal intercepts of each function.
31. \(f(t)=2(t-1)(t+2)(t-3)\)
32. \(f(x)=3(x+1)(x-4)(x+5)\)
33. \(g(n)=-2(3n-1)(2n+1)\)
34. \(k(u)=-3(4-n)(4n+3)\)
- Answer
-
1. As \(x \to \infty\), \(f(x) \to \infty\) As \(x \to -\infty\), \(f(x) \to \infty\)
3. As \(x \to \infty\), \(f(x) \to \infty\) As \(x \to -\infty\), \(f(x) \to -\infty\)
5. As \(x \to \infty\), \(f(x) \to -\infty\) As \(x \to -\infty\), \(f(x) \to -\infty\)
7. As \(x \to \infty\), \(f(x) \to -\infty\) As \(x \to -\infty\), \(f(x) \to \infty\)
9. \(7^{\text{th}}\) Degree, Leading coefficient 4
11. \(2^{\text{nd}}\) Degree, Leading coefficient -1
13. \(4^{\text{th}}\) Degree, Leading coefficient -2
15. \(3^{\text{rd}}\) Degree, Leading coefficient 6
17. As \(x \to \infty\), \(f(x) \to -\infty\) As \(x \to -\infty\), \(f(x) \to -\infty\)
19. As \(x \to \infty\), \(f(x) \to \infty\) As \(x \to -\infty\), \(f(x) \to \infty\)
21. intercepts: 5, turning points: 4
23. 3
25. 5
27. 3
29. 5
31. Horizontal Intercepts (1, 0), (-2, 0), (3, 0) Vertical Intercept (0, 12)
33. Horizontal Intercepts (1/3, 0) (-1/2. 0) Vertical Intercept (0, 2)


