Skip to main content
Mathematics LibreTexts

2.3: Differentiation Rules

  • Page ID
    204095
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    2.3 Differentiation Rules

    Learning Objectives
    • Apply the constant, power, sum and difference, product, and quotient rules to calculate the derivatives of a variety of functions, including polynomials, rational functions, and products of functions.
    • Use the extended power rule to find the derivatives of functions with negative exponents, demonstrating the correct application to both positive and negative integer exponents.
    • Combine the constant, power, sum and difference, product, and quotient rules to calculate the derivatives of polynomial and rational functions.

    Differentiation Formulas:

    1. Derivative of a constant function:
    \[
    \frac{d}{dx}(c) = 0
    \]

    2. Power rule (for any real number \( n \)):
    \[
    \frac{d}{dx}(x^n) = nx^{n - 1}
    \]

    3. Constant multiple rule:
    \[
    \frac{d}{dx}[c f(x)] = c \frac{d}{dx} f(x)
    \]

    4. Sum rule:
    \[
    \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx} f(x) + \frac{d}{dx} g(x)
    \]

    5. Difference rule:
    \[
    \frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx} f(x) - \frac{d}{dx} g(x)
    \]

    6. Product rule:
    \[
    \frac{d}{dx}[f(x)g(x)] = \frac{d}{dx}[f(x)] \cdot g(x) + f(x) \cdot \frac{d}{dx}[g(x)]
    \]

    7. Quotient rule:
    \[
    \frac{d}{dx} \left[ \frac{f(x)}{g(x)} \right]
    = \frac{ \frac{d}{dx}[f(x)] \cdot g(x) - f(x) \cdot \frac{d}{dx}[g(x)] }{ [g(x)]^2 }
    \]

    Example \(\PageIndex{15}\)

    Find the derivative of each function below.

    1. \( y = 7 \)
    2. \( y = x^5 \)
    3. \( y = 4x^9 - x^2 + 1 \)
    4. \( y = x^\pi \)
    5. \( y = x^2 - \dfrac{3}{x} \)
    6. \( y = x^5(3x^2 + 2x + 1) \)
    7. \( y = x^4 \left( \dfrac{10}{x^4} + \dfrac{1}{x^2} \right) \)
    8. \( y = \dfrac{8x^6}{3x^2 - 1} \)
    9. \( y = \dfrac{\sqrt{x} + 1}{x^3 - 4x^2 + 5} \)
    Example \(\PageIndex{16}\)

    Find the equation of the tangent line \( T(x) \) to the graph of the given function at the specified point.

    (1) \( f(x) = x^2 - \dfrac{3}{x} \) at \( (3, 8) \)

    (2) \( f(x) = x^4 \left( \dfrac{10}{x^4} + \dfrac{1}{x^2} \right) \) at \( (2, 14) \)

    (3) \( f(x) = \dfrac{\sqrt{x} + 1}{x^3 - 4x^2 + 5} \) at \( (1, 1) \)

    Example \(\PageIndex{17}\)

    Determine all points on the graph of

    \[
    f(x) = x^3 - 6x^2 +9x
    \]

    for which:

    (a) the tangent line is horizontal

    (b) the tangent line has a slope of \( -3 \)


    This page titled 2.3: Differentiation Rules is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Kevin Palencia.

    • Was this article helpful?