Skip to main content
Mathematics LibreTexts

2.6: The Chain Rule

  • Page ID
    204098
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    2.6 The Chain Rule

    Learning Objectives
    • Given a composite function, identify the inner and outer functions, and describe how they relate to the overall structure of the function.
    • Use the chain rule in conjunction with the power, product, and quotient rules to calculate the derivative of composite functions, applying the appropriate rules in the correct order.
    Definition \(\PageIndex{11}\)

    Let \( h(x) \) be the composite function \( h(x) = f(g(x)) \). The function \( g \) is applied first to the input \( x \), and is referred to as the inner function.

    The function \( f \) is applied to the result \( g(x) \), and is referred to as the outer function.

    Example \(\PageIndex{31}\)

    For each composite function below, identify the inner and outer functions.

    1. \( h(x) = (x^2 + 5)^{10} \)
    2. \( h(x) = \sqrt{x^3 + 4x + 1} \)
    3. \( h(x) = \sin(x^7) \)
    4. \( h(x) = \cos^3(x) \)

    The Chain Rule

    The Chain Rule is a method to calculate the derivative of composite functions:

    Suppose that \( g \) is differentiable at \( a \) and \( f \) is differentiable at \( g(a) \).
    Then the composite function \( h = f \circ g \), defined by \( h(x) = f(g(x)) \), is differentiable at \( a \), and

    \[
    h'(a) = f'(g(a)) \cdot g'(a)
    \]

    Problem-solving strategy to find the derivative of \( h(x) = f(g(x)) \):

    1. Identify \( f(x) \) and \( g(x) \) in the composition \( h(x) = f(g(x)) \)
    2. Find \( f'(x) \), then evaluate it at \( g(x) \) to obtain \( f'(g(x)) \)
    3. Find \( g'(x) \)
    4. Write the derivative: \( h'(x) = f'(g(x)) \cdot g'(x) \)
    Example \(\PageIndex{32}\)

    Calculate the derivative of each function:

    1. \( h(x) = (x^2 + 5)^{10} \)
    2. \( h(x) = \sqrt{x^3 + 4x + 1} \)
    3. \( h(x) = \cos^3 x \)
    4. \( h(x) = \sin(x^7 + 4x^3) \)
    5. \( h(x) = \dfrac{1}{\sin^3 x} \)
    6. \( h(x) = (3x + 8)^4 (x^2 - 3x)^2 \)
    7. \( h(x) = \dfrac{3x + \tan x}{(6x^2 + 1)^5} \)
    8. \( h(x) = \cos^{31}(3x^5 + 2x) \)

    We can also use the Leibniz notation to find the derivative of \( h(x) = f(g(x)) \).
    If \( y = f(u) \) and \( u = g(x) \) are both differentiable, then:

    \[
    \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}
    \]

    Example \(\PageIndex{33}\)

    Use the Leibniz notation to find the derivative of:

    1. \( y = (x^2 + 5)^{10} \)
    2. \( y = \sin(x^7 + 4x^3) \)
    Example \(\PageIndex{34}\)

    Find an equation of the tangent line to the graph of \( f(x) = \cos(\pi x) \) at the point \( \left( \frac{1}{2}, 0 \right) \).

    Example \(\PageIndex{35}\)

    The position function of a train is given by

    \[
    s(t) = \frac{200}{(1 + t)^3}
    \]

    where \( s \) is in meters and \( t \) is in seconds.

    1. Find the velocity and acceleration of the train at \( t = 6 \).
    2. Is the train speeding up or slowing down at that moment?

    This page titled 2.6: The Chain Rule is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Kevin Palencia.

    • Was this article helpful?