Skip to main content
Mathematics LibreTexts

2.8: Implicit Differentiation

  • Page ID
    204100
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    2.8 Implicit Differentiation

    Learning Objectives
    • Apply implicit differentiation to find the derivative of an implicit equation.
    • Use implicit differentiation to calculate the derivative of an implicit function at a given point and apply it to determine the equation of the tangent line at a given point.

    Usually, we define \( y \) as an explicit function of \( x \). For example: \(y = \sqrt{4 - x^2}\)

    However, the equation

    \[
    x^2 + y^2 = 4
    \]

    defines \( y \) implicitly as a function of \( x \).
    The graph of the equation can be broken into two pieces when we solve for \( y \):

    \[
    y = \pm \sqrt{4 - x^2}
    \]

    What about the derivative of a function given implicitly? First, let's analyze the following example:

    Suppose that the explicit formula of \( y = f(x) \) is unknown and that \( f \) is differentiable.
    Calculate:

    \[
    \frac{d}{dx}\left[ x + f(x)^2 \right] = \frac{d}{dx}\left[ x + y^2 \right]
    \]

    We differentiate both sides with respect to \( x \):

    \[
    \frac{d}{dx}(x) + \frac{d}{dx}(y^2) = 1 + 2y \cdot \frac{dy}{dx}
    \]

    So the result is:

    \[
    \frac{d}{dx}\left[ x + y^2 \right] = 1 + 2y \cdot \frac{dy}{dx}
    \]

    Problem-Solving Strategy:

    Suppose that we define a function \( y \) implicitly in terms of \( x \). To calculate the derivative of \( y \) using implicit differentiation, follow these steps:

    1. Take the derivative of both sides of the equation with respect to \( x \). For example: \[\frac{d}{dx}(\cos x) = -\sin x \quad \text{but} \quad \frac{d}{dx}(\cos y) = -\sin y \cdot \frac{dy}{dx}\]
    2. Rewrite the resulting equation so that all terms involving \( \frac{dy}{dx} \) are on the left-hand side, and all other terms are on the right-hand side.
    3. Factor out \( \frac{dy}{dx} \) on the left-hand side.
    4. Solve the equation for \( \frac{dy}{dx} \).
    Example \(\PageIndex{39}\)

    Compute the derivative \( \dfrac{dy}{dx} \) of the following equations (assume that \( y \) is a function of \( x \)):

    1. \( x^2 + y^2 = 4 \)
    2. \( x^3 + y^2 - 3xy = 3 \)
    3. \( x^3 \sin y = x^4 \)
    4. \( \arctan(x^3y)=xy^3\)
    5. \( \sqrt{x+y}=1+x^2y^2\)
    Example \(\PageIndex{40}\)

    Find the equations of the tangent lines to the curve \( x^2 + y^2 = 4\) at the following points:

    (a) \( (0, 2) \)

    (b) \( (-2, 0) \)

    (c) \( (1, \sqrt{3}) \)

    Example \(\PageIndex{41}\)

    Find the equation of the tangent line to the curve \(\frac{x^2}{9}+\frac{y^2}{36}=1 \) at the point \( (-2, -2\sqrt{5}) \).

    Example \(\PageIndex{42}\)

    Find the equation of the tangent line to the curve \( x^3 + y^2 - 3xy = 3\) at the point \( (-1, 1) \).


    This page titled 2.8: Implicit Differentiation is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Kevin Palencia.

    • Was this article helpful?