Skip to main content
Mathematics LibreTexts

3.10: Antiderivatives

  • Page ID
    204111
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    3.10 Antiderivatives

    Learning Objectives
    • Find the general antiderivative of a given function by applying integration techniques, including basic rules for integrals.
    • Apply basic rules for integrals (e.g., power rule, sum rule) to compute antiderivatives of functions.
    • Solve initial-value problems by finding the antiderivative of a function and applying the given initial conditions to determine the constant of integration.
    Definition \(\PageIndex{9}\)

    A function \( F \) is called an antiderivative of \( f \) on an interval \( I \) if \( F'(x) = f(x) \ \text{for all } x \text{ in } I.\)

    For example, if \( f(x) = x^2 \), then \( F(x) = \frac{x^3}{3} \) is an antiderivative of \( f \).

    Theorem \(\PageIndex{9}\)

    Suppose that \( F \) is an antiderivative of \( f \) on an interval \( I \). Then the most general antiderivative of \( f \) on \( I \) is:

    \[
    F(x) + C
    \]

    where \( C \) is a constant. Furthermore, if \( G \) is an antiderivative of \( f \) over \( I \), then there exists a constant \( C \) such that:

    \[
    G(x) = F(x) + C \quad \text{on } I
    \]

    Example \(\PageIndex{32}\)

    Find the general antiderivative of the following functions:

    1. \( f(x) = e^x \)
    2. \( f(x) = \sin x \)
    3. \( f(x) = \cos x \)
    4. \( f(x) = \dfrac{1}{x} \)
    Definition \(\PageIndex{10}\)

    Let \( f \) be a function. The indefinite integral of \( f \), denoted

    \[
    \int f(x) \, dx
    \]

    is defined as the most general antiderivative of \( f \). That is, if \( F \) is an antiderivative of \( f \), then

    \[
    \int f(x) \, dx = F(x) + C
    \]

    where \( C \) is an arbitrary constant.

    Derivative Formula Indefinite Integral
    \( \dfrac{d}{dx}[k] = 0 \) \( \displaystyle \int k \, dx = kx + C \)
    \( \dfrac{d}{dx}[x^n] = nx^{n-1} \) \( \displaystyle \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \), for \( n \ne -1 \)
    \( \dfrac{d}{dx}[\ln |x|] = \dfrac{1}{x} \) \( \displaystyle \int \frac{1}{x} \, dx = \ln |x| + C \)
    \( \dfrac{d}{dx}[e^x] = e^x \) \( \displaystyle \int e^x \, dx = e^x + C \)
    \( \dfrac{d}{dx}[\sin x] = \cos x \) \( \displaystyle \int \cos x \, dx = \sin x + C \)
    \( \dfrac{d}{dx}[\cos x] = -\sin x \) \( \displaystyle \int \sin x \, dx = -\cos x + C \)
    \( \dfrac{d}{dx}[\tan x] = \sec^2 x \) \( \displaystyle \int \sec^2 x \, dx = \tan x + C \)
    \( \dfrac{d}{dx}[\sin^{-1} x] = \dfrac{1}{\sqrt{1 - x^2}}\) \( \displaystyle \int \frac{1}{\sqrt{1 - x^2}} \, dx = \sin^{-1} x + C \)
    \( \dfrac{d}{dx}[\cos^{-1} x] = -\dfrac{1}{\sqrt{1 - x^2}} \) \( \displaystyle \int -\frac{1}{\sqrt{1 - x^2}} \, dx = \cos^{-1} x + C \)
    \( \dfrac{d}{dx}[\tan^{-1} x] = \dfrac{1}{1 + x^2} \) \( \displaystyle \int \frac{1}{1 + x^2} \, dx = \tan^{-1} x + C \)
    Theorem \(\PageIndex{10}\)

    Properties of Indefinite Integrals:

    Let \( F \) and \( G \) be antiderivatives of \( f \) and \( g \), respectively. Let \( k \) be a constant.

    1. \( \displaystyle \int (f(x) \pm g(x)) \, dx = F(x) \pm G(x) + C \)
    2. \( \displaystyle \int k f(x) \, dx = k F(x) + C \)
    Example \(\PageIndex{33}\)

    Evaluate the following indefinite integrals:

    1. \( \displaystyle \int (8x^9 + 2x^6 - 4x^2 - 5) \, dx \)
    2. \( \displaystyle \int (4x^5 + e^x) \, dx \)
    3. \( \displaystyle \int \frac{3x^5 + 10x^3 + 4x}{x^5} \, dx \)
    4. \( \displaystyle \int \frac{3x^5 + 7\sqrt[5]{x} + 2}{x} \, dx \)
    5. \( \displaystyle \int \frac{2}{\sqrt{1 - x^2}} \, dx \)
    6. \( \displaystyle \int (\cos x - 4\sec^2 x) \, dx \)

    Initial-value problem

    A differential equation is an equation that relates an unknown function and one or more of its derivatives. The equation

    \[\dfrac{dy}{dx}=f(x)\label{diffeq1} \]

    is a simple example of a differential equation. Solving this equation means finding a function \(y\) with a derivative \(f\). Therefore, the solutions of Equation \ref{diffeq1} are the antiderivatives of \(f\). If \(F\) is one antiderivative of \( f\), every function of the form \( y=F(x)+C\) is a solution of that differential equation. For example, the solutions of

    \[\dfrac{dy}{dx}=4x^3\nonumber \]

    are given by

    \[y=\int 4x^3\,dx=x^4+C.\nonumber \]

    Sometimes we are interested in determining whether a particular solution curve passes through a certain point \( (x_0,y_0)\) —that is, \( y(x_0)=y_0\). The problem of finding a function \(y\) that satisfies a differential equation

    \(\dfrac{dy}{dx}=f(x)\)

    with the additional condition

    \(y(x_0)=y_0\)

    is an example of an initial-value problem. The condition \( y(x_0)=y_0\) is known as an initial condition. For example, looking for a function \( y\) that satisfies the differential equation

    \(\dfrac{dy}{dx}=4x^3\)

    and the initial condition

    \(y(2)=6\)

    is an example of an initial-value problem. Since the solutions of the differential equation are \( y=x^4+C,\) to find a function \(y\) that also satisfies the initial condition, we need to find \(C\) such that \(y(2)=(2)^4+C=6\). From this equation, we see that \( C=-10\), and we conclude that \( y=x^4-10\) is the solution of this initial-value problem.

    Example \(\PageIndex{34}\)

    Solve the following initial value problems:

    1. \( \dfrac{dy}{dx} = 4 + \sqrt{x}, \quad y(4) = 20 \)
    2. \( \dfrac{dy}{dx} = 4x^5 + e^x, \quad y(1) = e \)
    3. \( \dfrac{dy}{dx} = \cos x - 4\sec^2 x, \quad y\left(\dfrac{\pi}{4}\right) = \dfrac{\sqrt{2}}{2} \)
    Example \(\PageIndex{35}\)

    A particle in motion has acceleration given by:

    \[
    a(t) = 12t^2 - 6 \ \text{and} \ s(2) = 5.
    \]

    Find the position function \( s(t) \) of the particle.

    Example \(\PageIndex{36}\)

    A car is traveling at a speed of 66 ft/sec (45 mph) when the brakes are applied. The car begins decelerating at a constant rate of 10 ft/sec².

    1. How long does it take for the car to stop?
    2. What distance does the car cover before stopping?

    This page titled 3.10: Antiderivatives is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Kevin Palencia.

    • Was this article helpful?