Identify nondegenerate conic sections given their general form equations.
Use rotation of axes formulas.
Write equations of rotated conics in standard form.
Identify conics without rotating axes.
As we have seen, conic sections are formed when a plane intersects two right circular cones aligned tip to tip and extending infinitely far in opposite directions, which we also call a cone. The way in which we slice the cone will determine the type of conic section formed at the intersection. A circle is formed by slicing a cone with a plane perpendicular to the axis of symmetry of the cone. An ellipse is formed by slicing a single cone with a slanted plane not perpendicular to the axis of symmetry. A parabola is formed by slicing the plane through the top or bottom of the double-cone, whereas a hyperbola is formed when the plane slices both the top and bottom of the cone (Figure ).
Figure : The nondegenerate conic sections
Ellipses, circles, hyperbolas, and parabolas are sometimes called the nondegenerate conic sections, in contrast to the degenerate conic sections, which are shown in Figure . A degenerate conic results when a plane intersects the double cone and passes through the apex. Depending on the angle of the plane, three types of degenerate conic sections are possible: a point, a line, or two intersecting lines.
Figure : Degenerate conic sections
Identifying Nondegenerate Conics in General Form
In previous sections of this chapter, we have focused on the standard form equations for nondegenerate conic sections. In this section, we will shift our focus to the general form equation, which can be used for any conic. The general form is set equal to zero, and the terms and coefficients are given in a particular order, as shown below.
where , , and are not all zero. We can use the values of the coefficients to identify which type conic is represented by a given equation.
You may notice that the general form equation has an term that we have not seen in any of the standard form equations. As we will discuss later, the term rotates the conic whenever is not equal to zero.
Table
Conic Sections
Example
ellipse
circle
hyperbola
parabola
or
one line
intersecting lines
parallel lines
a point
no graph
GENERAL FORM OF CONIC SECTIONS
A conic section has the general form
where , , and are not all zero. Table summarizes the different conic sections where , and and are nonzero real numbers. This indicates that the conic has not been rotated.
Table
ellipse
, and
circle
,
hyperbola
or , where and are positive
parabola
or
How to: Given the equation of a conic, identify the type of conic
Rewrite the equation in the general form (Equation ),
Identify the values of and from the general form.
If and are nonzero, have the same sign, and are not equal to each other, then the graph may be an ellipse.
If and are equal and nonzero and have the same sign, then the graph may be a circle.
If and are nonzero and have opposite signs, then the graph may be a hyperbola.
If either or is zero, then the graph may be a parabola.
If , the conic section will have a vertical and/or horizontal axes. If does not equal 0, as shown below, the conic section is rotated. Notice the phrase “may be” in the definitions. That is because the equation may not represent a conic section at all, depending on the values of , , , , , and . For example, the degenerate case of a circle or an ellipse is a point:
when and have the same sign.
The degenerate case of a hyperbola is two intersecting straight lines: , when and have opposite signs.
On the other hand, the equation, , when and are positive does not represent a graph at all, since there are no real ordered pairs which satisfy it.
Example : Identifying a Conic from Its General Form
Identify the graph of each of the following nondegenerate conic sections.
Solution
Rewriting the general form (Equation ), we have with and , so we observe that and have opposite signs. The graph of this equation is a hyperbola.
Rewriting the general form (Equation ), we have with and . We can determine that the equation is a parabola, since is zero.
Rewriting the general form (Equation ), we have with and . Because , the graph of this equation is a circle.
Rewriting the general form (Equation ), we have with and . Because and , the graph of this equation is an ellipse.
Exercise
Identify the graph of each of the following nondegenerate conic sections.
Answer a
hyperbola
Answer b
ellipse
Finding a New Representation of the Given Equation after Rotating through a Given Angle
Until now, we have looked at equations of conic sections without an term, which aligns the graphs with the x- and y-axes. When we add an term, we are rotating the conic about the origin. If the x- and y-axes are rotated through an angle, say ,then every point on the plane may be thought of as having two representations: on the Cartesian plane with the original x-axis and y-axis, and on the new plane defined by the new, rotated axes, called the x'-axis and y'-axis (Figure ).
Figure : The graph of the rotated ellipse
We will find the relationships between and on the Cartesian plane with and on the new rotated plane (Figure ).
Figure : The Cartesian plane with - and -axes and the resulting − and −axes formed by a rotation by an angle .
The original coordinate x- and y-axes have unit vectors and . The rotated coordinate axes have unit vectors and .The angle is known as the angle of rotation (Figure ). We may write the new unit vectors in terms of the original ones.
Figure : Relationship between the old and new coordinate planes.
Consider a vector in the new coordinate plane. It may be represented in terms of its coordinate axes.
Because , we have representations of and in terms of the new coordinate system.
and
EQUATIONS OF ROTATION
If a point on the Cartesian plane is represented on a new coordinate plane where the axes of rotation are formed by rotating an angle from the positive x-axis, then the coordinates of the point with respect to the new axes are . We can use the following equations of rotation to define the relationship between and :
and
How to:Given the equation of a conic, find a new representation after rotating through an angle
Find and where and .
Substitute the expression for and into in the given equation, then simplify.
Write the equations with and in standard form.
Example : Finding a New Representation of an Equation after Rotating through a Given Angle
Find a new representation of the equation after rotating through an angle of .
Solution
Find and , where and .
Because ,
and
Substitute and into .
Simplify.
Write the equations with and in the standard form.
This equation is an ellipse. Figure shows the graph.
Figure
Writing Equations of Rotated Conics in Standard Form
Now that we can find the standard form of a conic when we are given an angle of rotation, we will learn how to transform the equation of a conic given in the form into standard form by rotating the axes. To do so, we will rewrite the general form as an equation in the and coordinate system without the term, by rotating the axes by a measure of that satisfies
We have learned already that any conic may be represented by the second degree equation
where , ,and are not all zero. However, if , then we have an term that prevents us from rewriting the equation in standard form. To eliminate it, we can rotate the axes by an acute angle where .
If , then is in the first quadrant, and is between .
If , then is in the second quadrant, and is between .
If , then .
How to: Given an equation for a conic in the system, rewrite the equation without the term in terms of and ,where the and axes are rotations of the standard axes by degrees
Find .
Find and .
Substitute and into and .
Substitute the expression for and into in the given equation, and then simplify.
Write the equations with and in the standard form with respect to the rotated axes.
Example : Rewriting an Equation with respect to the and axes without the Term
Rewrite the equation in the system without an term.
Solution
First, we find .
, and
Figure
From Figure :
So the hypotenuse is
Next, we find and .
Substitute the values of and into and .
and
Substitute the expressions for and into in the given equation, and then simplify.
Write the equations with and in the standard form with respect to the new coordinate system.
Figure shows the graph of the ellipse.
Figure
Exercise
Rewrite the in the system without the term.
Answer
Example :Graphing an Equation That Has No Terms
Graph the following equation relative to the system:
Solution
First, we find .
, ,and
Because , we can draw a reference triangle as in Figure .
Figure
Thus, the hypotenuse is
Next, we find and . We will use half-angle identities.
Now we find and .
and
Now we substitute and into .
Figure shows the graph of the hyperbola
Figure
Identifying Conics without Rotating Axes
Now we have come full circle. How do we identify the type of conic described by an equation? What happens when the axes are rotated? Recall, the general form of a conic is
If we apply the rotation formulas to this equation we get the form
It may be shown that
The expression does not vary after rotation, so we call the expression invariant. The discriminant, , is invariant and remains unchanged after rotation. Because the discriminant remains unchanged, observing the discriminant enables us to identify the conic section.
HOWTO: USING THE DISCRIMINANT TO IDENTIFY A CONIC
If the equation
is transformed by rotating axes into the equation
then
The equation is an ellipse, a parabola, or a hyperbola, or a degenerate case of one of these. If the discriminant, , is
, the conic section is an ellipse
, the conic section is a parabola
, the conic section is a hyperbola
Example : Identifying the Conic without Rotating Axes
Identify the conic for each of the following without rotating axes.
Solution
a. Let’s begin by determining , , and .
Now, we find the discriminant.
Therefore, represents an ellipse.
b. Again, let’s begin by determining ,, and .
Now, we find the discriminant.
Therefore, represents an ellipse.
Exercise
Identify the conic for each of the following without rotating axes.
Answer a
hyperbola
Answer b
ellipse
Key Equations
General Form equation of a conic section
Rotation of a conic section
Angle of rotation
, where
Key Concepts
Four basic shapes can result from the intersection of a plane with a pair of right circular cones connected tail to tail. They include an ellipse, a circle, a hyperbola, and a parabola.
A nondegenerate conic section has the general form where , and are not all zero. The values of , , and determine the type of conic. See Example .
Equations of conic sections with an term have been rotated about the origin. See Example .
The general form can be transformed into an equation in the and coordinate system without the term. See Example and Example .
An expression is described as invariant if it remains unchanged after rotating. Because the discriminant is invariant, observing it enables us to identify the conic section. See Example .