5.7E: Exercises for Section 5.7
- Last updated
- Jun 24, 2021
- Save as PDF
- Page ID
- 70522
( \newcommand{\kernel}{\mathrm{null}\,}\)
In exercises 1 - 6, evaluate each integral in terms of an inverse trigonometric function.
1) ∫√3/20dx√1−x2
- Answer
- ∫√3/20dx√1−x2=sin−1x|√3/20=π3
2) ∫1/2−1/2dx√1−x2
3) ∫1√3dx√1+x2
- Answer
- ∫1√3dx√1+x2=tan−1x|1√3=−π12
4) ∫√31√3dx1+x2
5) ∫√21dx|x|√x2−1
- Answer
- ∫√21dx|x|√x2−1=sec−1x|√21=π4
6) ∫2√31dx|x|√x2−1
In exercises 7 - 12, find each indefinite integral, using appropriate substitutions.
7) ∫dx√9−x2
- Answer
- ∫dx√9−x2=sin−1(x3)+C
8) ∫dx√1−16x2
9) ∫dx9+x2
- Answer
- ∫dx9+x2=13tan−1(x3)+C
10) ∫dx25+16x2
11) ∫dxx√x2−9
- Answer
- ∫dxx√x2−9=13sec−1(|x|3)+C
12) ∫dxx√4x2−16
13) Explain the relationship −cos−1t+C=∫dt√1−t2=sin−1t+C. Is it true, in general, that cos−1t=−sin−1t?
- Answer
- cos(π2−θ)=sinθ. So, sin−1t=π2−cos−1t. They differ by a constant.
14) Explain the relationship sec−1t+C=∫dt|t|√t2−1=−csc−1t+C. Is it true, in general, that sec−1t=−csc−1t?
15) Explain what is wrong with the following integral: ∫21dt√1−t2.
- Answer
- √1−t2 is not defined as a real number when t>1.
16) Explain what is wrong with the following integral: ∫1−1dt|t|√t2−1.
- Answer
- √t2−1 is not defined as a real number when −1<t<1, and the integrand is undefined when t=−1 or t=1.
In exercises 17 - 20, solve for the antiderivative of f with C=0, then use a calculator to graph f and the antiderivative over the given interval [a,b]. Identify a value of C such that adding C to the antiderivative recovers the definite integral F(x)=∫xaf(t)dt.
17) [T] ∫1√9−x2dx over [−3,3]
- Answer
-
The antiderivative is sin−1(x3)+C. Taking C=π2 recovers the definite integral.
18) [T] ∫99+x2dx over [−6,6]
19) [T] ∫cosx4+sin2xdx over [−6,6]
- Answer
-
The antiderivative is 12tan−1(sinx2)+C. Taking C=12tan−1(sin(6)2) recovers the definite integral.
20) [T] ∫ex1+e2xdx over [−6,6]
In exercises 21 - 26, compute the antiderivative using appropriate substitutions.
21) ∫sin−1t√1−t2dt
- Answer
- ∫sin−1tdt√1−t2=12(sin−1t)2+C
22) ∫dtsin−1t√1−t2
23) ∫tan−1(2t)1+4t2dt
- Answer
- ∫tan−1(2t)1+4t2dt=14(tan−1(2t))2+C
24) ∫ttan−1(t2)1+t4dt
25) ∫sec−1(t2)|t|√t2−4dt
- Answer
- ∫sec−1(t2)|t|√t2−4dt=14(sec−1(t2))2+C
26) ∫tsec−1(t2)t2√t4−1dt
In exercises 27 - 32, use a calculator to graph the antiderivative of f with C=0 over the given interval [a,b]. Approximate a value of C, if possible, such that adding C to the antiderivative gives the same value as the definite integral F(x)=∫xaf(t)dt.
27) [T] ∫1x√x2−4dx over [2,6]
- Answer
-
The antiderivative is 12sec−1(x2)+C. Taking C=0 recovers the definite integral over [2,6].
28) [T] ∫1(2x+2)√xdx over [0,6]
29) [T] ∫(sinx+xcosx)1+x2sin2xdx over [−6,6]
- Answer
-
The general antiderivative is tan−1(xsinx)+C. Taking C=−tan−1(6sin(6)) recovers the definite integral.
30) [T] ∫2e−2x√1−e−4xdx over [0,2]
31) [T] ∫1x+xln2x over [0,2]
- Answer
-
The general antiderivative is tan−1(lnx)+C. Taking C=π2=limt→∞tan−1t recovers the definite integral.
32) [T] ∫sin−1x√1−x2 over [−1,1]
In exercises 33 - 38, compute each integral using appropriate substitutions.
33) ∫et√1−e2tdt
- Answer
- ∫et√1−e2tdt=sin−1(et)+C
34) ∫et1+e2tdt
35) ∫dtt√1−ln2t
- Answer
- ∫dtt√1−ln2t=sin−1(lnt)+C
36) ∫dtt(1+ln2t)
37) ∫cos−1(2t)√1−4t2dt
- Answer
- ∫cos−1(2t)√1−4t2dt=−12(cos−1(2t))2+C
38) ∫etcos−1(et)√1−e2tdt
In exercises 39 - 42, compute each definite integral.
39) ∫1/20tan(sin−1t)√1−t2dt
- Answer
- ∫1/20tan(sin−1t)√1−t2dt=12ln(43)
40) ∫1/21/4tan(cos−1t)√1−t2dt
41) ∫1/20sin(tan−1t)1+t2dt
- Answer
- ∫1/20sin(tan−1t)1+t2dt=1−2√5
42) ∫1/20cos(tan−1t)1+t2dt
43) For A>0, compute I(A)=∫A−Adt1+t2 and evaluate lima→∞I(A), the area under the graph of 11+t2 on [−∞,∞].
- Answer
- 2tan−1(A)→π as A→∞
44) For 1<B<∞, compute I(B)=∫B1dtt√t2−1 and evaluate limB→∞I(B), the area under the graph of 1t√t2−1 over [1,∞).
45) Use the substitution u=√2cotx and the identity 1+cot2x=csc2x to evaluate ∫dx1+cos2x. (Hint: Multiply the top and bottom of the integrand by csc2x.)
- Answer
- Using the hint, one has ∫csc2xcsc2x+cot2xdx=∫csc2x1+2cot2xdx. Set u=√2cotx. Then, du=−√2csc2x and the integral is −1√2∫du1+u2=−√22tan−1u+C=√22tan−1(√2cotx)+C. If one uses the identity tan−1s+tan−1(1s)=π2, then this can also be written √22tan−1(tanx√2)+C.
46) [T] Approximate the points at which the graphs of f(x)=2x2−1 and g(x)=(1+4x2)−3/2 intersect, and approximate the area between their graphs accurate to three decimal places.
47) [T] Approximate the points at which the graphs of f(x)=x2−1 and f(x)=x2−1 intersect, and approximate the area between their graphs accurate to three decimal places.
- Answer
- x≈±1.13525. The left endpoint estimate with N=100 is 2.796 and these decimals persist for N=500.
48) Use the following graph to prove that ∫x0√1−t2dt=12x√1−x2+12sin−1x.