5.9.1: Exercises
- Page ID
- 83585
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
The table shows the GPA of 15 randomly selected students and the number of hours spent on studying their lessons before an exam. Use this information for problems 1 - 4.
Student | Number of Hours | GPA |
---|---|---|
1 | 3 | 2.5 |
2 | 3 | 2.4 |
3 | 6 | 3.5 |
4 | 4 | 3 |
5 | 5 | 3.2 |
6 | 6 | 3.8 |
7 | 3 | 2.7 |
8 | 4 | 2.6 |
9 | 2 | 2.8 |
10 | 5 | 3.4 |
11 | 5 | 3 |
12 | 4 | 3.3 |
13 | 5 | 3 |
14 | 4 | 2.7 |
15 | 8 | 4 |
- Draw a scatter plot of the data. Label the axes.
- Based on the information provided, which best describes the relationship between students’ GPA and study habits?
- Negative
- Positive
- No correlation
- Based on the scatter plot, which statement accurately describes the information provided?
- The correlation is positive. As the number of hours spent on studying increases, the students’ GPA tends to increase.
- The correlation is negative. As the number of hours spent on studying increases, the students’ GPA tends to increase.
- The correlation is negative. As the number of hours spent on studying decreases, the students’ GPA tends to increase.
- The data show no relationship between students’ GPA and study habits.
- Do the data imply that the length of time spent on studying before an exam causes the change in students’ GPA? Why or why not?
- Yes. Since hours spent on studying and GPA are correlated, it means the time spent on studying causes the GPA to increase.
- No. The increase in GPA could be attributed to other factors such as gender, class size, socioeconomic status, faculty qualification, and many others.
- No. The two variables are not correlated. Hence, the increase in time spent on studying does not affect the GPA.
- Yes. There is sufficient evidence to support the effect of study habits on students’ GPA.
- If there is a strong correlation between marijuana use and use of other drugs, can we conclude that using marijuana leads to using other drugs?
- Describe whether the scatter plot of the following variables will show a positive correlation, a negative correlation, or no correlation.
- Height and weight
- Height and grade in a course
- Grade in a course and shoe size
- Hours of television watched and grade in a course
- Height and shoe size
- Hours of television watched and w eight
- The table below shows the number of students in a class and the absences in a week.
Class Size
15
18
20
20
25
25
30
35
35
40
Number of Absences
5
2
10
4
8
12
2
5
7
10
- Draw a scatter plot and determine the relationship that best describes the data.
- Is the correlation between class size and the number of absences positive, negative, or zero? Fill in the blank: As the class size increases, the number of absences __________________.
- The table below shows the recorded maximum average monthly temperature readings of a certain state in the US and the shipment of residential storage water heaters.
\(\begin{array}{|l|l|l|}
\hline \text { Month} & \text {Avg. Monthly Temperature } ^{\circ}\text{C}& \text{Shipment of water heaters (in units)} \\
\hline \text { Jan}&-1 \;^\circ \text{C}&384,213 \\
\hline \text { Feb}&\;\;0 \;^\circ \text{C}&745,570 \\
\hline \text { Mar}&\;\;9 \;^\circ \text{C}&1,162,074 \\
\hline \text { Apr}& \;15 \;^\circ \text{C}&1,473,757 \\
\hline \text { May}& \;22 \;^\circ \text{C}&1,806,054 \\
\hline \text { June}&\;27 \;^\circ \text{C}&2,217,780 \\
\hline \text { July}&\;30 \;^\circ \text{C}&2,610,644 \\
\hline \text { Aug}&\; 26 \;^\circ \text{C}&3,011,506 \\
\hline \text { Sep} &\;24 \;^\circ \text{C}&3,377,667 \\
\hline \text { Oct} &\;16 \;^\circ \text{C}&3,803,921 \\
\hline\text { Nov} &\;12 \;^\circ \text{C}&4,162,667 \\
\hline \text { Dec} &\;\;5 \;^\circ \text{C}&4,584,367 \\
\hline
\end{array}\)- Draw a scatterplot.
- Describe the correlation that best describes the data provided.
- In order to determine whether or not there is a relationship between the temperature and the chirp rate of a certain variety of cricket, the following data were collected. Let x = ˚C and y = # chirps per second.
\(\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline x & 31.4 & 22.0 & 34.1 & 29.1 & 27.0 & 24.0 & 20.9 & 27.8 & 20.8 & 28.5 & 26.4 & 28.1 & 27.9 & 28.6 & 24.5 \\
\hline y & 20.0 & 16.0 & 19.8 & 18.4 & 17.1 & 15.5 & 14.7 & 17.1 & 15.4 & 16.2 & 15.0 & 17.2 & 16.0 & 17.0 & 14.4 \\
\hline
\end{array}\)- Draw a scatterplot of the data given.
- Is the correlation between temperature and chirp rate positive, negative, or zero?
- If the correlation is strong, can we conclude that temperature affects the chirp rate?
- During the spring and summer, an ice cream shop kept track of the average daily temperature (in ˚F) and the amount of ice cream sales (in dollars).
\(\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \text { Temperature (} ^{\circ} {\text F)} & 52 & 55 & 61 & 66 & 72 & 75 & 77 & 84 & 90 & 94 & 97 \\
\hline \text{ Ice Cream Sales (\$)} & 3500 & 4200 & 5000 & 5300 & 6600 & 6800 & 7200 & 8000 & 8400 & 9100 & 9500 \\
\hline
\end{array}\)- Create a scatterplot with this data.
- Use your scatterplot to make a prediction for the ice cream sales when the temperature is 70˚F.
- If ice cream sales were $7500, what do you think the average temperature was that day?