1.5E: Exercises
- Last updated
- Jul 1, 2021
- Save as PDF
- Page ID
- 72111
( \newcommand{\kernel}{\mathrm{null}\,}\)
Practice Makes Perfect
Add and Subtract Fractions with a Common Denominator
In the following exercises, add.
Exercise 1.5E.1
613+513
- Answer
-
1113
Exercise 1.5E.2
415+715
Exercise 1.5E.3
x4+34
- Answer
-
x+34
Exercise 1.5E.4
8q+6q
Exercise 1.5E.5
−316+(−716)
- Answer
-
−58
Exercise 1.5E.6
−516+(−916)
Exercise 1.5E.7
−817+1517
- Answer
-
717
Exercise 1.5E.8
−919+1719
Exercise 1.5E.9
613+(−1013)+(−1213)
- Answer
-
−1613
Exercise 1.5E.10
512+(−712)+(−1112)
In the following exercises, subtract.
Exercise 1.5E.11
1115−715
- Answer
-
415
Exercise 1.5E.12
913−413
Exercise 1.5E.13
1112−512
- Answer
-
12
Exercise 1.5E.14
712−512
Exercise 1.5E.15
1921−421
- Answer
-
57
Exercise 1.5E.16
1721−821
Exercise 1.5E.17
5y8−78
- Answer
-
5y−78
Exercise 1.5E.18
11z13−813
Exercise 1.5E.19
−23u−15u
- Answer
-
−38u
Exercise 1.5E.20
−29v−26v
Exercise 1.5E.21
−35−(−45)
- Answer
-
15
Exercise 1.5E.22
−37−(−57)
Exercise 1.5E.23
−79−(−59)
- Answer
-
−29
Exercise 1.5E.24
−811−(−511)
Mixed Practice
In the following exercises, simplify.
Exercise 1.5E.25
−518·910
- Answer
-
−14
Exercise 1.5E.26
−314·712
Exercise 1.5E.27
n5−45
- Answer
-
n−45
Exercise 1.5E.28
611−s11
Exercise 1.5E.29
−724+224
- Answer
-
−frac524
Exercise 1.5E.30
−518+118
Exercise 1.5E.31
815÷125
- Answer
-
29
Exercise 1.5E.32
712÷928
Add or Subtract Fractions with Different Denominators
In the following exercises, add or subtract.
Exercise 1.5E.33
12+17
- Answer
-
914
Exercise 1.5E.34
13+18
Exercise 1.5E.35
13−(−19)
- Answer
-
49
Exercise 1.5E.36
14−(−18)
Exercise 1.5E.37
712+512
- Answer
-
2924
Exercise 1.5E.38
512+38
Exercise 1.5E.39
712−916
- Answer
-
148
Exercise 1.5E.40
716−512
Exercise 1.5E.41
23−38
- Answer
-
724
Exercise 1.5E.42
56−34
Exercise 1.5E.43
−1130+2740
- Answer
-
37120
Exercise 1.5E.44
−920+1730
Exercise 1.5E.45
−1330+2542
- Answer
-
17105
Exercise 1.5E.46
−2330+548
Exercise 1.5E.47
−3956−2235
- Answer
-
−5340
Exercise 1.5E.48
−3349−1835
Exercise 1.5E.49
−23−(−34)
- Answer
-
112
Exercise 1.5E.50
−34−(−45)
Exercise 1.5E.51
1+78
- Answer
-
158
Exercise 1.5E.52
1−310
Exercise 1.5E.53
x3+14
- Answer
-
4x+312
Exercise 1.5E.54
y2+23
Exercise 1.5E.55
y4−35
- Answer
-
5y−1220
Exercise 1.5E.56
x5−14
Mixed Practice
In the following exercises, simplify.
Exercise 1.5E.57
- 23+16
- 23÷16
- Answer
-
- 56
- 4
Exercise 1.5E.58
- −25−18
- −25⋅18
Exercise 1.5E.59
- 5n6÷815
- 5n6−815
- Answer
-
- 25n16
- 25n−1630
Exercise 1.5E.60
- 3a8÷712
- 3a8−712
Exercise 1.5E.61
−38÷(−310)
- Answer
-
54
Exercise 1.5E.62
−512÷(−59)
Exercise 1.5E.63
−38+512
- Answer
-
124
Exercise 1.5E.64
−18+712
Exercise 1.5E.65
56−19
- Answer
-
1318
Exercise 1.5E.66
59−16
Exercise 1.5E.67
−715−y4
- Answer
-
−28−15y60
Exercise 1.5E.68
−38−x11
Exercise 1.5E.69
1112a⋅9a16
- Answer
-
3364
Exercise 1.5E.70
10y13⋅815y
Use the Order of Operations to Simplify Complex Fractions
In the following exercises, simplify.
Exercise 1.5E.71
23+42(23)2
- Answer
-
54
Exercise 1.5E.72
33−32(34)2
Exercise 1.5E.73
(35)2(37)2
- Answer
-
4925
Exercise 1.5E.74
(34)2(58)2
Exercise 1.5E.75
213+15
- Answer
-
154
Exercise 1.5E.76
514+13
Exercise 1.5E.77
78−2312+38
- Answer
-
521
Exercise 1.5E.78
34−3514+25
Exercise 1.5E.79
12+23⋅512
- Answer
-
79
Exercise 1.5E.80
13+25⋅34
Exercise 1.5E.81
1−35÷110
- Answer
-
−5
Exercise 1.5E.82
1−56÷112
Exercise 1.5E.83
23+16+34
- Answer
-
1912
Exercise 1.5E.84
23+14+35
Exercise 1.5E.85
38−16+34
- Answer
-
2324
Exercise 1.5E.86
25+58−34
Exercise 1.5E.87
12(920−415)
- Answer
-
115
Exercise 1.5E.88
8(1516−56)
Exercise 1.5E.89
58+161924
- Answer
-
1
Exercise 1.5E.90
16+3101430
Exercise 1.5E.91
(59+16)÷(23−12)
- Answer
-
133
Exercise 1.5E.92
(34+16)÷(58−13)
Evaluate Variable Expressions with Fractions
In the following exercises, evaluate.
Exercise 1.5E.93
x+(−56) when
- x=13
- x=−16
- Answer
-
- −12
- −1
Exercise 1.5E.94
x+(−1112) when
- x=1112
- x=−34
Exercise 1.5E.95
x−25 when
- x=35
- x=−35
- Answer
-
- 15
- −1
Exercise 1.5E.96
x−13 when
- x=23
- x=−23
Exercise 1.5E.97
710−w when
- w=12
- w=−12
- Answer
-
- 15
- 65
Exercise 1.5E.98
512−w when
- w=14
- w=−14
Exercise \PageIndex{99}
2 x^{2} y^{3} \text { when } x=-\frac{2}{3} \text { and } y=-\frac{1}{2}
- Answer
- -\frac{1}{9}
Exercise \PageIndex{100}
8 u^{2} v^{3} \text { when } u=-\frac{3}{4} \text { and } v=-\frac{1}{2}
Exercise \PageIndex{101}
\frac{a+b}{a-b} \text { when } a=-3, b=8
- Answer
- -\frac{5}{11}
Exercise \PageIndex{102}
\frac{r-s}{r+s} \text { when } r=10, s=-5
Everyday Math
Exercise \PageIndex{103}
Decorating Laronda is making covers for the throw pillows on her sofa. For each pillow cover, she needs \frac{1}{2} yard of print fabric and \frac{3}{8}\) yard of solid fabric. What is the total amount of fabric Laronda needs for each pillow cover?
- Answer
-
\frac{7}{8} yard
Exercise \PageIndex{104}
Baking Vanessa is baking chocolate chip cookies and oatmeal cookies. She needs \frac{1}{2} cup of sugar for the chocolate chip cookies and \frac{1}{4} of sugar for the oatmeal cookies. How much sugar does she need altogether?
Writing Exercises
Exercise \PageIndex{105}
Why do you need a common denominator to add or subtract fractions? Explain.
- Answer
-
Answers may vary
Exercise \PageIndex{106}
How do you find the LCD of 2 fractions?
Self Check
ⓐ After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.
ⓑ After looking at the checklist, do you think you are well-prepared for the next chapter? Why or why not?