Skip to main content
Mathematics LibreTexts

2.3.1: New Page

  • Page ID
    214374
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \(\newcommand{\longvect}{\overrightarrow}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    For the following exercises, translate each compound statement into symbolic form. Given p: “Layla has two weeks for vacation,” q: “Marcus is Layla’s friend,” r: “Layla will travel to Paris, France,” and s: “Layla and Marcus will travel together to Niagara Falls, Ontario.”

    Exercise \(\PageIndex{1}\)

    If Layla has two weeks for vacation, then she will travel to Paris, France.

    Exercise \(\PageIndex{2}\)

    Layla and Marcus will travel together to Niagara Falls, Ontario or Layla will travel to Paris, France.

    Exercise \(\PageIndex{3}\)

    If Marcus is not Layla’s friend, then they will not travel to Niagara Falls, Ontario together.”

    Exercise \(\PageIndex{4}\)

    Layla and Marcus will travel to Niagara Falls, Ontario together if and only if Layla and Marcus are friends.

    Exercise \(\PageIndex{5}\)

    If Layla does not have two weeks for vacation and Marcus is Layla’s friend, then Marcus and Layla will travel together to Niagara Falls, Ontario.

    Exercise \(\PageIndex{6}\)

    If Layla has two weeks for vacation and Marcus is not her friend, then she will travel to Paris, France.

    For the following exercises, translate each compound statement into symbolic form. Given \(p\): “Tom is a cat,” \(q\): “Jerry is a mouse,” \(r\): “Spike is a dog,” \(s\): “Tom chases Jerry,” and \(t\): “Spike catches Tom.”

    Exercise \(\PageIndex{7}\)

    Jerry is a mouse and Tom is a cat.

    Exercise \(\PageIndex{8}\)

    If Tom chases Jerry, then Spike will catch Tom.

    Exercise \(\PageIndex{9}\)

    If Spike does not catch Tom, then Tom did not chase Jerry.

    Exercise \(\PageIndex{10}\)

    Tom is a cat and Spike is a dog, or Jerry is not a Mouse.

    Exercise \(\PageIndex{11}\)

    It is not the case that Tom is not a cat and Jerry is not a mouse.

    Exercise \(\PageIndex{12}\)

    Spike is not a dog and Jerry is a mouse if and only if Tom chases Jerry, but Spike does not catch Tom.

    For the following exercises, translate the symbolic form of each compound statement into words. Given \(p\): “Tracy Chapman plays guitar,” \(q\): “Joan Jett plays guitar,” \(r\): “All rock bands include guitarists,” and \(s\): “Elton John plays the piano.”

    Exercise \(\PageIndex{13}\)

    \(p \vee r\)

    Exercise \(\PageIndex{14}\)

    \(\sim s \rightarrow \sim q\)

    Exercise \(\PageIndex{15}\)

    \((p \wedge q) \leftrightarrow r\)

    Exercise \(\PageIndex{16}\)

    \(\sim r \wedge(q \vee s)\)

    Exercise \(\PageIndex{17}\)

    \(\sim(p \wedge \sim q)\)

    Exercise \(\PageIndex{18}\)

    \((q \rightarrow \sim r) \leftrightarrow(\sim p \vee \sim r)\)

    For the following exercises, translate the symbolic form of each compound statement into words. Given \(p\): “The median is the middle number,” \(q\): “The mode is the most frequent number,” \(r\): “The mean is the average number,” \(s\): “The median, mean, and mode are equal,” and \(t\): “The data set is symmetric.”

    Exercise \(\PageIndex{19}\)

    \(t \rightarrow s\)

    Exercise \(\PageIndex{20}\)

    \(p \wedge(q \wedge r)\)

    Exercise \(\PageIndex{21}\)

    \(\sim t \rightarrow \sim s\)

    Exercise \(\PageIndex{22}\)

    \((r \wedge p) \leftrightarrow q\)

    Exercise \(\PageIndex{23}\)

    \((t \rightarrow \sim q) \vee(r \rightarrow s)\)

    Exercise \(\PageIndex{24}\)

    \(\sim(q \vee r) \rightarrow t\)

    For the following exercises, apply the proper dominance of connectives by adding parentheses to indicate the order in which the statement must be evaluated.

    Exercise \(\PageIndex{25}\)

    \(p \rightarrow q \vee r\)

    Exercise \(\PageIndex{26}\)

    \(p \wedge q \leftrightarrow \sim r\)

    Exercise \(\PageIndex{27}\)

    \(p \vee r \vee \sim q\)

    Exercise \(\PageIndex{28}\)

    \(p \wedge \sim q \wedge r\)

    Exercise \(\PageIndex{29}\)

    \(p \wedge r \vee s \wedge t\)

    Exercise \(\PageIndex{30}\)

    \(q \rightarrow \sim r \leftrightarrow \sim p \vee \sim r\)

    Exercise \(\PageIndex{31}\)

    \(p \rightarrow r \vee s \leftrightarrow \sim t\)

    Exercise \(\PageIndex{32}\)

    \(\sim(t \wedge s) \vee(p \rightarrow q) \wedge \sim r\)


    2.3.1: New Page is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?