Skip to main content
Mathematics LibreTexts

2.4.1: Exercises

  • Page ID
    214376
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \(\newcommand{\longvect}{\overrightarrow}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    For the following exercises, find the truth value of each statement.

    Exercise \(\PageIndex{1}\)

    \(p: 7 \times 3=21\). What is the truth value of \(\sim p\) ?

    Exercise \(\PageIndex{2}\)

    \(q\) : The sun revolves around the Earth. What is the truth value of \(\sim q\) ?

    Exercise \(\PageIndex{3}\)

    \(\sim r\) : The acceleration of gravity is \(9.81 \mathrm{~m} / \mathrm{sec}^2\). What is the truth value of \(r\) ?

    Exercise \(\PageIndex{4}\)

    \(s\) : Dan Brown is not the author of the book, The Davinci Code. What is the truth value of \(\sim(\sim s)\) ?

    Exercise \(\PageIndex{5}\)

    \(t\) : Broccoli is a vegetable. What is the truth value of \(\sim(\sim t)\) ?

    For the following exercises, given \(p: 1+2=3, q\) : Five is an even number, and \(r\) : Seven is a prime number, find the truth value of each of the following statements.

    Exercise \(\PageIndex{6}\)

    \(\sim q\)

    Exercise \(\PageIndex{7}\)

    \(p \wedge q\)

    Exercise \(\PageIndex{8}\)

    \(p \vee q\)

    Exercise \(\PageIndex{9}\)

    \(\sim p \vee \sim q\)

    Exercise \(\PageIndex{10}\)

    \(p \wedge \sim q\)

    Exercise \(\PageIndex{11}\)

    \(p \wedge r\)

    Exercise \(\PageIndex{12}\)

    \(q \wedge r\)

    Exercise \(\PageIndex{13}\)

    \(q \wedge \sim r\)

    Exercise \(\PageIndex{14}\)

    \(q \vee \sim r\)

    Exercise \(\PageIndex{15}\)

    \(\sim(p \wedge r)\)

    Exercise \(\PageIndex{16}\)

    \(p \vee q \wedge r\)

    Exercise \(\PageIndex{17}\)

    \(\sim p \vee(q \wedge r)\)

    Exercise \(\PageIndex{18}\)

    \(\sim(q \wedge r) \vee \sim p\)

    Exercise \(\PageIndex{19}\)

    \(q \vee r \vee p\)

    Exercise \(\PageIndex{20}\)

    \(\sim q \wedge r \wedge p\)

    For the following exercises, complete the truth table to determine the truth value of the proposition in the last column.

    Exercise \(\PageIndex{21}\)
    \(p\) \(q\) \(r\) \(\sim p\) \(\sim p \vee q\) \((\sim p \vee q) \wedge r\)
    T T T      
    Exercise \(\PageIndex{22}\)
    \(p\) \(q\) \(r\) \(\sim p\) \(\sim p \vee q\) \((\sim p \vee q) \wedge r\)
    F T F      
    Exercise \(\PageIndex{23}\)
    \(p\) \(q\) \(r\) \(\sim p\) \(\sim r\) \(\sim p \wedge q(\sim p \wedge q) \vee \sim r\)
    F F F      
    Exercise \(\PageIndex{24}\)
    \(p\) \(q\) \(r\) \(\sim p\) \(\sim r\) \(\sim p \vee q\) \((\sim p \vee q) \vee \sim r\)
    F F F        

    For the following exercises, given \(p\) : All triangles have three sides, \(q\) : Some rectangles are not square, and \(r\) : A pentagon has eight sides, determine the truth value of each compound statement by constructing a truth table.

    Exercise \(\PageIndex{25}\)

    \(\sim r \wedge q \wedge p\)

    Exercise \(\PageIndex{26}\)

    \(\sim(q \wedge p) \vee r\)

    Exercise \(\PageIndex{27}\)

    \(\sim p \vee q \wedge r\)

    Exercise \(\PageIndex{28}\)

    \(\sim p \vee \sim q \vee r\) For the following exercises, construct a truth table to analyze all the possible outcomes for the following arguments.

    Exercise \(\PageIndex{29}\)

    \(\sim q \wedge q\)

    Exercise \(\PageIndex{30}\)

    \(\sim p \vee \sim q\)

    Exercise \(\PageIndex{31}\)

    \(\sim p \wedge \sim q\)

    Exercise \(\PageIndex{32}\)

    \(p \wedge q \vee r\) For the following exercises, construct a truth table to determine the validity of each statement.

    Exercise \(\PageIndex{33}\)

    \(\sim q \vee q\)

    Exercise \(\PageIndex{34}\)

    \(p \wedge \sim q\)

    Exercise \(\PageIndex{35}\)

    \(p \wedge q \vee \sim p\)

    Exercise \(\PageIndex{36}\)

    \((p \wedge q) \vee(\sim p \wedge \sim q)\)


    2.4.1: Exercises is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?