1.9: Calculus of the Hyperbolic Functions
- Last updated
- Jul 13, 2020
- Save as PDF
- Page ID
- 42104
( \newcommand{\kernel}{\mathrm{null}\,}\)
Learning Objectives
- Apply the formulas for derivatives and integrals of the hyperbolic functions.
- Apply the formulas for the derivatives of the inverse hyperbolic functions and their associated integrals.
- Describe the common applied conditions of a catenary curve.
We were introduced to hyperbolic functions previously, along with some of their basic properties. In this section, we look at differentiation and integration formulas for the hyperbolic functions and their inverses.
Derivatives and Integrals of the Hyperbolic Functions
Recall that the hyperbolic sine and hyperbolic cosine are defined as
\sinh x=\dfrac{e^x−e^{−x}}{2} \nonumber
and
\cosh x=\dfrac{e^x+e^{−x}}{2}. \nonumber
The other hyperbolic functions are then defined in terms of \sinh x and \cosh x. The graphs of the hyperbolic functions are shown in Figure \PageIndex{1}.

It is easy to develop differentiation formulas for the hyperbolic functions. For example, looking at \sinh x we have
\begin{align*} \dfrac{d}{dx} \left(\sinh x \right) &=\dfrac{d}{dx} \left(\dfrac{e^x−e^{−x}}{2}\right) \\[4pt] &=\dfrac{1}{2}\left[\dfrac{d}{dx}(e^x)−\dfrac{d}{dx}(e^{−x})\right] \\[4pt] &=\dfrac{1}{2}[e^x+e^{−x}] \\[4pt] &=\cosh x. \end{align*} \nonumber
Similarly,
\dfrac{d}{dx} \cosh x=\sinh x. \nonumber
We summarize the differentiation formulas for the hyperbolic functions in Table \PageIndex{1}.
f(x) | \dfrac{d}{dx}f(x) |
---|---|
\sinh x | \cosh x |
\cosh x | \sinh x |
\tanh x | \text{sech}^2 \,x |
\text{coth } x | −\text{csch}^2\, x |
\text{sech } x | −\text{sech}\, x \tanh x |
\text{csch } x | −\text{csch}\, x \coth x |
Let’s take a moment to compare the derivatives of the hyperbolic functions with the derivatives of the standard trigonometric functions. There are a lot of similarities, but differences as well. For example, the derivatives of the sine functions match:
\dfrac{d}{dx} \sin x=\cos x \nonumber
and
\dfrac{d}{dx} \sinh x=\cosh x. \nonumber
The derivatives of the cosine functions, however, differ in sign:
\dfrac{d}{dx} \cos x=−\sin x, \nonumber
but
\dfrac{d}{dx} \cosh x=\sinh x. \nonumber
As we continue our examination of the hyperbolic functions, we must be mindful of their similarities and differences to the standard trigonometric functions. These differentiation formulas for the hyperbolic functions lead directly to the following integral formulas.
\begin{align} \int \sinh u \,du &=\cosh u+C \\[4pt] \int \text{csch}^2 u \, du &=−\coth u+C \\[4pt] \int \cosh u \,du &=\sinh u+C \\[4pt] \int \text{sech} \,u \tanh u \,du &=−\text{sech } \,u+C−\text{csch} \,u+C \\[4pt] \int \text{sech }^2u \,du &=\tanh u+C \\[4pt] \int \text{csch} \,u \coth u \,du &=−\text{csch} \,u+C \end{align} \nonumber
Example \PageIndex{1}: Differentiating Hyperbolic Functions
Evaluate the following derivatives:
- \dfrac{d}{dx}(\sinh(x^2))
- \dfrac{d}{dx}(\cosh x)^2
Solution:
Using the formulas in Table \PageIndex{1} and the chain rule, we get
- \dfrac{d}{dx}(\sinh(x^2))=\cosh(x^2)⋅2x
- \dfrac{d}{dx}(\cosh x)^2=2\cosh x\sinh x
Exercise \PageIndex{1}
Evaluate the following derivatives:
- \dfrac{d}{dx}(\tanh(x^2+3x))
- \dfrac{d}{dx}\left(\dfrac{1}{(\sinh x)^2}\right)
- Hint
-
Use the formulas in Table \PageIndex{1} and apply the chain rule as necessary.
- Answer a
-
\dfrac{d}{dx}(\tanh(x^2+3x))=(\text{sech}^2(x^2+3x))(2x+3)
- Answer b
-
\dfrac{d}{dx}\left(\dfrac{1}{(\sinh x)^2}\right)=\dfrac{d}{dx}(\sinh x)^{−2}=−2(\sinh x)^{−3}\cosh x
Example \PageIndex{2}: Integrals Involving Hyperbolic Functions
Evaluate the following integrals:
- \displaystyle \int x\cosh(x^2)dx
- \displaystyle \int \tanh x\,dx
Solution
We can use u-substitution in both cases.
a. Let u=x^2. Then, du=2x\,dx and
\begin{align*} \int x\cosh (x^2)dx &=\int \dfrac{1}{2}\cosh u\,du \\[4pt] &=\dfrac{1}{2}\sinh u+C \\[4pt] &=\dfrac{1}{2}\sinh (x^2)+C. \end{align*}
b. Let u=\cosh x. Then, du=\sinh x\,dx and
\begin{align*} \int \tanh x \,dx &=\int \dfrac{\sinh x}{\cosh x}\,dx \\[4pt] &=\int \dfrac{1}{u}du \\[4pt] &=\ln|u|+C \\[4pt] &= \ln|\cosh x|+C.\end{align*}
Note that \cosh x>0 for all x, so we can eliminate the absolute value signs and obtain
\int \tanh x \,dx=\ln(\cosh x)+C. \nonumber
Exercise \PageIndex{2}
Evaluate the following integrals:
- \displaystyle \int \sinh^3x \cosh x \,dx
- \displaystyle \int \text{sech }^2(3x)\, dx
- Hint
-
Use the formulas above and apply u-substitution as necessary.
- Answer a
-
\displaystyle \int \sinh^3x \cosh x \,dx=\dfrac{\sinh^4x}{4}+C
- Answer b
-
\displaystyle \int \text{sech }^2(3x) \, dx=\dfrac{\tanh(3x)}{3}+C
Calculus of Inverse Hyperbolic Functions
Looking at the graphs of the hyperbolic functions, we see that with appropriate range restrictions, they all have inverses. Most of the necessary range restrictions can be discerned by close examination of the graphs. The domains and ranges of the inverse hyperbolic functions are summarized in Table \PageIndex{2}.
Function | Domain | Range |
---|---|---|
\sinh^{−1}x | (−∞,∞) | (−∞,∞) |
\cosh^{−1}x | (1,∞) | [0,∞) |
\tanh^{−1}x | (−1,1) | (−∞,∞) |
\coth^{−1}x | (−∞,1)∪(1,∞) | (−∞,0)∪(0,∞) |
\text{sech}^{−1}x | (0,1) | [0,∞) |
\text{csch}^{−1}x | (−∞,0)∪(0,∞) | (−∞,0)∪(0,∞) |
The graphs of the inverse hyperbolic functions are shown in the following figure.

To find the derivatives of the inverse functions, we use implicit differentiation. We have
\begin{align} y &=\sinh^{−1}x \\[4pt] \sinh y &=x \\[4pt] \dfrac{d}{dx} \sinh y &=\dfrac{d}{dx}x \\[4pt] \cosh y\dfrac{dy}{dx} &=1. \end{align} \nonumber
Recall that \cosh^2y−\sinh^2y=1, so \cosh y=\sqrt{1+\sinh^2y}.Then,
\dfrac{dy}{dx}=\dfrac{1}{\cosh y}=\dfrac{1}{\sqrt{1+\sinh^2y}}=\dfrac{1}{\sqrt{1+x^2}}. \nonumber
We can derive differentiation formulas for the other inverse hyperbolic functions in a similar fashion. These differentiation formulas are summarized in Table \PageIndex{3}.
f(x) | \dfrac{d}{dx}f(x) |
---|---|
\sinh^{−1}x | \dfrac{1}{\sqrt{1+x^2}} |
\cosh^{−1}x | \dfrac{1}{\sqrt{x^2−1}} |
\tanh^{−1}x | \dfrac{1}{1−x^2} |
\coth^{−1}x | \dfrac{1}{1−x^2} |
\text{sech}^{−1}x | \dfrac{−1}{x\sqrt{1−x^2}} |
\text{csch}^{−1}x | \dfrac{−1}{|x|\sqrt{1+x^2}} |
Note that the derivatives of \tanh^{−1}x and \coth^{−1}x are the same. Thus, when we integrate 1/(1−x^2), we need to select the proper antiderivative based on the domain of the functions and the values of x. Integration formulas involving the inverse hyperbolic functions are summarized as follows.
\int \dfrac{1}{\sqrt{1+u^2}}du=\sinh^{−1}u+C \nonumber
\int \dfrac{1}{u\sqrt{1−u^2}}du=−\text{sech}^{−1}|u|+C \nonumber
\int \dfrac{1}{\sqrt{u^2−1}}du=\cosh^{−1}u+C \nonumber
\int \dfrac{1}{u\sqrt{1+u^2}}du=−\text{csch}^{−1}|u|+C \nonumber
\int \dfrac{1}{1−u^2}du=\begin{cases}\tanh^{−1}u+C & \text{if }|u|<1\\ \coth^{−1}u+C & \text{if }|u|>1\end{cases} \nonumber
Example \PageIndex{3}: Differentiating Inverse Hyperbolic Functions
Evaluate the following derivatives:
- \dfrac{d}{dx}\left(\sinh^{−1}\left(\dfrac{x}{3}\right)\right)
- \dfrac{d}{dx}\left(\tanh^{−1}x\right)^2
Solution
Using the formulas in Table \PageIndex{3} and the chain rule, we obtain the following results:
- \dfrac{d}{dx}(\sinh^{−1}(\dfrac{x}{3}))=\dfrac{1}{3\sqrt{1+\dfrac{x^2}{9}}}=\dfrac{1}{\sqrt{9+x^2}}
- \dfrac{d}{dx}(\tanh^{−1}x)^2=\dfrac{2(\tanh^{−1}x)}{1−x^2}
Exercise \PageIndex{3}
Evaluate the following derivatives:
- \dfrac{d}{dx}(\cosh^{−1}(3x))
- \dfrac{d}{dx}(\coth^{−1}x)^3
- Hint
-
Use the formulas in Table \PageIndex{3} and apply the chain rule as necessary.
- Answer a
-
\dfrac{d}{dx}(\cosh^{−1}(3x))=\dfrac{3}{\sqrt{9x^2−1}}
- Answer b
-
\dfrac{d}{dx}(\coth^{−1}x)^3=\dfrac{3(\coth^{−1}x)^2}{1−x^2}
Example \PageIndex{4}: Integrals Involving Inverse Hyperbolic Functions
Evaluate the following integrals:
- \displaystyle \int \dfrac{1}{\sqrt{4x^2−1}}dx
- \displaystyle \int \dfrac{1}{2x\sqrt{1−9x^2}}dx
Solution
We can use u-substitution in both cases.
Let u=2x. Then, du=2\,dx and we have
\begin{align*} \int \dfrac{1}{\sqrt{4x^2−1}}\,dx &=\int \dfrac{1}{2\sqrt{u^2−1}}\,du \\[4pt] &=\dfrac{1}{2}\cosh^{−1}u+C \\[4pt] &=\dfrac{1}{2}\cosh^{−1}(2x)+C. \end{align*} \nonumber
Let u=3x. Then, du=3\,dx and we obtain
\begin{align*} \int \dfrac{1}{2x\sqrt{1−9x^2}}dx &=\dfrac{1}{2}\int \dfrac{1}{u\sqrt{1−u^2}}du \\[4pt] &=−\dfrac{1}{2}\text{sech}^{−1}|u|+C \\[4pt] &=−\dfrac{1}{2}\text{sech}^{−1}|3x|+C \end{align*}
Exercise \PageIndex{4}
Evaluate the following integrals:
- \displaystyle \int \dfrac{1}{\sqrt{x^2−4}}dx,x>2
- \displaystyle \int \dfrac{1}{\sqrt{1−e^{2x}}}dx
- Hint
-
Use the formulas above and apply u-substitution as necessary.
- Answer a
-
\displaystyle \int \dfrac{1}{\sqrt{x^2−4}}dx=\cosh^{−1}(\dfrac{x}{2})+C
- Answer b
-
\displaystyle \int \dfrac{1}{\sqrt{1−e^{2x}}}dx=−\text{sech}^{−1}(e^x)+C
Applications
One physical application of hyperbolic functions involves hanging cables. If a cable of uniform density is suspended between two supports without any load other than its own weight, the cable forms a curve called a catenary. High-voltage power lines, chains hanging between two posts, and strands of a spider’s web all form catenaries. The following figure shows chains hanging from a row of posts.

Hyperbolic functions can be used to model catenaries. Specifically, functions of the form y=a\cdot \cosh(x/a) are catenaries. Figure \PageIndex{4} shows the graph of y=2\cosh(x/2).

Example \PageIndex{5}: Using a Catenary to Find the Length of a Cable
Assume a hanging cable has the shape 10\cosh(x/10) for −15≤x≤15, where x is measured in feet. Determine the length of the cable (in feet).
Solution
Recall from Section 6.4 that the formula for arc length is
\underbrace{\int ^b_a\sqrt{1+[f′(x)]^2}dx}_{\text{Arc Length}}. \nonumber
We have f(x)=10 \cosh(x/10), so f′(x)=\sinh(x/10). Then the arc length is
\int ^b_a\sqrt{1+[f′(x)]^2}dx=\int ^{15}_{−15}\sqrt{1+\sinh^2 \left(\dfrac{x}{10}\right)}dx. \nonumber
Now recall that
1+\sinh^2x=\cosh^2x, \nonumber
so we have
\begin{align*} \text{Arc Length} &= \int ^{15}_{−15}\sqrt{1+\sinh^2 \left(\dfrac{x}{10}\right)}dx \\[4pt] &=\int ^{15}_{−15}\cosh \left(\dfrac{x}{10}\right)dx \\[4pt] &= \left.10\sinh \left(\dfrac{x}{10}\right)\right|^{15}_{−15}\\[4pt] &=10\left[\sinh\left(\dfrac{3}{2}\right)−\sinh\left(−\dfrac{3}{2}\right)\right]\\[4pt] &=20\sinh \left(\dfrac{3}{2}\right) \\[4pt] &≈42.586\,\text{ft.} \end{align*}
Exercise \PageIndex{5}:
Assume a hanging cable has the shape 15 \cosh (x/15) for −20≤x≤20. Determine the length of the cable (in feet).
- Answer
-
52.95 ft
Key Concepts
- Hyperbolic functions are defined in terms of exponential functions.
- Term-by-term differentiation yields differentiation formulas for the hyperbolic functions. These differentiation formulas give rise, in turn, to integration formulas.
- With appropriate range restrictions, the hyperbolic functions all have inverses.
- Implicit differentiation yields differentiation formulas for the inverse hyperbolic functions, which in turn give rise to integration formulas.
- The most common physical applications of hyperbolic functions are calculations involving catenaries.
Glossary
- catenary
- a curve in the shape of the function y=a\cdot\cosh(x/a) is a catenary; a cable of uniform density suspended between two supports assumes the shape of a catenary