Skip to main content
Mathematics LibreTexts

6.3: Complementary Events .

  • Page ID
    139282
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Now let us examine the probability that an event does not happen. As in the previous section, consider the situation of rolling a six-sided die and first compute the probability of rolling a six: the answer is \(P(\operatorname{six})=1 / 6\). Now consider the probability that we do not roll a six: there are 5 outcomes that are not a six, so the answer is \(P(\) not a six \()=\dfrac{5}{6}\).

    Notice that \(P(\operatorname{six})+P(\) not a six \()=\dfrac{1}{6}+\dfrac{5}{6}=\dfrac{6}{6}=1 \quad\) This is not a coincidence.

    Definition: Compliment of an Event

    The complement of an event is the event " \(E\) does NOT happen".

    The notation \(\bar{E}\) is used for the complement of event \(E\). You should recognize this notation from the last chapter.

    For any event \(E, P(E)+P(\bar{E})=1\)

    We can compute the probability of the complement using \(P(\bar{E})=1-P(E)\)

    Notice also that \(P(E)=1-P(\bar{E})\)

    Example \(\PageIndex{1}\)

    If you pull a random card from a deck of playing cards, what is the probability it is not a heart?

    Solution

    There are 13 hearts in the deck, so \(P\) (heart) \(=\dfrac{13}{52}=\dfrac{1}{4}\).

    The probability of not drawing a heart is the complement:

    \[
    P(\text { not heart })=1-P(\text { heart })=1-\dfrac{1}{4}=\dfrac{3}{4}
    \]

    Example \(\PageIndex{2}\)

    A jar contains 28 marbles, 12 of which are red. If you pick 1 marble out of the jar, what is the probability that it is not red?

    Solution

    There are 12 red marbles out of 28 total marbles, so \(\mathrm{P}(\mathrm{red})=\dfrac{12}{28}=\dfrac{3}{7}\).

    The probability of not drawing a red marble is the complement:

    \[
    P(\text { not red })=1-\dfrac{3}{7}=\dfrac{4}{7}
    \]

    Exercise \(\PageIndex{1}\)

    Your favorite basketball player is an 84% free throw shooter. Find the probability that they do NOT make their next free throw.

    Answer

    1-0.84 = 0.16


    6.3: Complementary Events . is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?