More Proofs
The explanatory proofs given in the above examples are typically called combinatorial proofs. In general, to give a combinatorial proof for a binomial identity, say \(A = B\) you do the following:
- Find a counting problem you will be able to answer in two ways.
- Explain why one answer to the counting problem is \(A\).
- Explain why the other answer to the counting problem is \(B\).
Since both \(A\) and \(B\) are the answers to the same question, we must have \(A = B\).
The tricky thing is coming up with the question. This is not always obvious, but it gets easier the more counting problems you solve. You will start to recognize types of answers as the answers to types of questions. More often what will happen is you will be solving a counting problem and happen to think up two different ways of finding the answer. Now you have a binomial identity and the proof is right there. The proof is the problem you just solved together with your two solutions.
For example, consider this counting question:
How many 10-letter words use exactly four A's, three B's, two C's and one D?
Let's try to solve this problem. We have 10 spots for letters to go. Four of those need to be A's. We can pick the four A-spots in \({10 \choose 4}\) ways. Now where can we put the B's? Well there are only 6 spots left, we need to pick \(3\) of them. This can be done in \({6 \choose 3}\) ways. The two C's need to go in two of the 3 remaining spots, so we have \({3 \choose 2}\) ways of doing that. That leaves just one spot of the D, but we could write that 1 choice as \({1 \choose 1}\). Thus the answer is:
\begin{equation*} {10 \choose 4}{6 \choose 3}{3 \choose 2}{1 \choose 1}. \end{equation*}
But why stop there? We can find the answer another way too. First let's decide where to put the one D: we have 10 spots, we need to choose 1 of them, so this can be done in \({10 \choose 1}\) ways. Next, choose one of the \({9 \choose 2}\) ways to place the two C's. We now have \(7\) spots left, and three of them need to be filled with B's. There are \({7 \choose 3}\) ways to do this. Finally the A's can be placed in \({4 \choose 4}\) (that is, only one) ways. So another answer to the question is
\begin{equation*} {10 \choose 1}{9 \choose 2}{7 \choose 3}{4 \choose 4}. \end{equation*}
Interesting. This gives us the binomial identity:
\begin{equation*} {10 \choose 4}{6 \choose 3}{3 \choose 2}{1 \choose 1} = {10 \choose 1}{9 \choose 2}{7 \choose 3}{4 \choose 4}. \end{equation*}
Here are a couple of other binomial identities with combinatorial proofs.
Example \(\PageIndex{6}\)
Prove the identity
\begin{equation*} 1 n + 2(n-1) + 3 (n-2) + \cdots + (n-1) 2 + n 1 = {n+2 \choose 3}. \end{equation*}
- Solution
-
To give a combinatorial proof we need to think up a question we can answer in two ways: one way needs to give the left-hand-side of the identity, the other way needs to be the right-hand-side of the identity. Our clue to what question to ask comes from the right-hand side: \({n+2 \choose 3}\) counts the number of ways to select 3 things from a group of \(n+2\) things. Let's name those things \(1, 2, 3, \ldots, n+2\). In other words, we want to find 3-element subsets of those numbers (since order should not matter, subsets are exactly the right thing to think about). We will have to be a bit clever to explain why the left-hand-side also gives the number of these subsets. Here's the proof.
Proof
Consider the question “How many 3-element subsets are there of the set \(\{1,2,3,\ldots, n+2\}\text{?}\)” We answer this in two ways:
Answer 1: We must select 3 elements from the collection of \(n+2\) elements. This can be done in \({n+2 \choose 3}\) ways.
Answer 2: Break this problem up into cases by what the middle number in the subset is. Say each subset is \(\{a,b,c\}\) written in increasing order. We count the number of subsets for each distinct value of \(b\). The smallest possible value of \(b\) is \(2\), and the largest is \(n+1\).
When \(b = 2\), there are \(1 \cdot n\) subsets: 1 choice for \(a\) and \(n\) choices (3 through \(n+2\)) for \(c\).
When \(b = 3\), there are \(2 \cdot (n-1)\) subsets: 2 choices for \(a\) and \(n-1\) choices for \(c\).
When \(b = 4\), there are \(3 \cdot (n-2)\) subsets: 3 choices for \(a\) and \(n-2\) choices for \(c\).
And so on. When \(b = n+1\), there are \(n\) choices for \(a\) and only 1 choice for \(c\), so \(n \cdot 1\) subsets.
Therefore the total number of subsets is
\begin{equation*} 1 n + 2 (n-1) + 3 (n-2) + \cdots + (n-1)2 + n 1. \end{equation*}
Since Answer 1 and Answer 2 are answers to the same question, they must be equal. Therefore
\begin{equation*} 1 n + 2 (n-1) + 3 (n-2) + \cdots + (n-1) 2 + n 1 = {n+2 \choose 3}. \end{equation*}
\(\square\)
Example \(\PageIndex{7}\)
Prove the binomial identity
\begin{equation*} {n \choose 0}^2 + {n \choose 1}^2 + {n \choose 2}^2 + \cdots + {n \choose n}^2 = {2n \choose n}. \end{equation*}
- Solution 1
-
We will give two different proofs of this fact. The first will be very similar to the previous example (counting subsets). The second proof is a little slicker, using lattice paths.
Proof
Consider the question: “How many pizzas can you make using \(n\) toppings when there are \(2n\) toppings to choose from?”
Answer 1: There are \(2n\) toppings, from which you must choose \(n\). This can be done in \({2n \choose n}\) ways.
Answer 2: Divide the toppings into two groups of \(n\) toppings (perhaps \(n\) meats and \(n\) veggies). Any choice of \(n\) toppings must include some number from the first group and some number from the second group. Consider each possible number of meat toppings separately:
0 meats: \({n \choose 0}{n \choose n}\), since you need to choose 0 of the \(n\) meats and \(n\) of the \(n\) veggies.
1 meat: \({n \choose 1}{n \choose n-1}\), since you need 1 of \(n\) meats so \(n-1\) of \(n\) veggies.
2 meats: \({n \choose 2}{n \choose n-2}\). Choose 2 meats and the remaining \(n-2\) toppings from the \(n\) veggies.
And so on. The last case is \(n\) meats, which can be done in \({n \choose n}{n \choose 0}\) ways.
Thus the total number of pizzas possible is
\begin{equation*} {n \choose 0}{n \choose n} + {n \choose 1}{n \choose n-1} + {n \choose 2}{n \choose n-2} + \cdots + {n \choose n}{n \choose 0}. \end{equation*}
This is not quite the left-hand side … yet. Notice that \({n \choose n} = {n \choose 0}\) and \({n \choose n-1} = {n \choose 1}\) and so on, by the identity in Example 1.4.4. Thus we do indeed get
\begin{equation*} {n \choose 0}^2 + {n \choose 1}^2 + {n \choose 2}^2 + \cdots + {n \choose n}^2. \end{equation*}
Since these two answers are answers to the same question, they must be equal, and thus
\begin{equation*} {n \choose 0}^2 + {n \choose 1}^2 + {n \choose 2}^2 + \cdots + {n \choose n}^2 = {2n \choose n}. \end{equation*}
\(\square\)
For an alternative proof, we use lattice paths. This is reasonable to consider because the right-hand side of the identity reminds us of the number of paths from \((0,0)\) to \((n,n)\).
Proof
Consider the question: How many lattice paths are there from \((0,0)\) to \((n,n)\text{?}\)
Answer 1: We must travel \(2n\) steps, and \(n\) of them must be in the up direction. Thus there are \({2n \choose n}\) paths.
Answer 2: Note that any path from \((0,0)\) to \((n,n)\) must cross the line \(x + y = n\). That is, any path must pass through exactly one of the points: \((0,n)\), \((1,n-1)\), \((2,n-2)\), …, \((n, 0)\). For example, this is what happens in the case \(n = 4\text{:}\)
How many paths pass through \((0,n)\text{?}\) To get to that point, you must travel \(n\) units, and \(0\) of them are to the right, so there are \({n \choose 0}\) ways to get to \((0,n)\). From \((0,n)\) to \((n,n)\) takes \(n\) steps, and \(0\) of them are up. So there are \({n \choose 0}\) ways to get from \((0,n)\) to \((n,n)\). Therefore there are \({n \choose 0}{n \choose 0}\) paths from \((0,0)\) to \((n,n)\) through the point \((0,n)\).
What about through \((1,n-1)\). There are \({n \choose 1}\) paths to get there (\(n\) steps, 1 to the right) and \({n \choose 1}\) paths to complete the journey to \((n,n)\) (\(n\) steps, \(1\) up). So there are \({n \choose 1}{n \choose 1}\) paths from \((0,0)\) to \((n,n)\) through \((1,n-1)\).
In general, to get to \((n,n)\) through the point \((k,n-k)\) we have \({n \choose k}\) paths to the midpoint and then \({n \choose k}\) paths from the midpoint to \((n,n)\). So there are \({n \choose k}{n \choose k}\) paths from \((0,0)\) to \((n,n)\) through \((k, n-k)\).
All together then the total paths from \((0,0)\) to \((n,n)\) passing through exactly one of these midpoints is
\begin{equation*} {n \choose 0}^2 + {n \choose 1}^2 + {n \choose 2}^2 + \cdots + {n \choose n}^2. \end{equation*}
Since these two answers are answers to the same question, they must be equal, and thus
\begin{equation*} {n \choose 0}^2 + {n \choose 1}^2 + {n \choose 2}^2 + \cdots + {n \choose n}^2 = {2n \choose n}. \end{equation*}
\(\square\)