Skip to main content
Mathematics LibreTexts

Combo Simplification Practice

  • Page ID
    160069
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Simplify.

    \(3x + 5x\)   \(\frac{2}{3}(3x + 6) - 4x\)  
    \(2a - 4a + 7\)   \(\frac{5}{2}x - \frac{3}{2}x\)  
    \(\frac{1}{2}x - \frac{3}{4}x + 1\)   \(4(a - b) + 2b\)  
    \(4y^2 + 2y - 6y^2 + 5\)   \(3x + \frac{1}{2}(4x - 6)\)  
    \(5x - 3x + 2\)   \(6 - 2(2x + 1)\)  
    \(\sqrt{16} + x^2\)   \(\sqrt{25} + x^2 - 3\)  
    \(3(x + 2)\)   \(2a + 3b - a + 2b\)  
    \(\frac{1}{3}(3x + 6)\)   \(6x + \frac{1}{2}(4x - 2)\)  
    \(4x^2 - 2x + 6 - 3x^2\)   \(x^2 + 2x - x^2 + 3\)  
    \(2(a + b) - 3a\)   \(\frac{1}{4}x + \frac{3}{4}x\)  
    \(5 - 3(2x - 1)\)   \(4(a + b) - 3(a - b)\)  

    FOIL or Factor:

    \((x + 2)(x + 3)\)   \(x^2 + 5x + 6\)  
    \((2x - 5)(x + 4)\)   \(2x^2 - 8x + 6\)  
    \((3a + 4)(2a - 1)\)   \(a^2 - 9a + 14\)  
    \((x - 6)(x + 7)\)   \(x^2 - 7x + 10\)  
    \((5y + 2)(3y - 1)\)   \(3y^2 + 5y - 2\)  
    \((x + 2)(x - 1)(x + 3)\)   \(x^2 + 4x - 12\)  
    \((2x - 3)(x + 4)(x - 1)\)   \(2a^2 - 3a - 5\)  
    \((a + 1)(a - 2)(a + 3)\)   \(x^2 - 10x + 21\)  
    \((y + 2)(y - 3)(y + 4)\)   \(a^2 - 4a + 3\)  
    \((2x + 1)(x - 2)(x + 5)\)   \(x^2 - 11x + 24\)  

    Simplify.

    \(\dfrac{2x^2 + 4x}{2x}\)  
    \(\dfrac{3x^2 - 12}{3x}\)  
    \(\dfrac{x^2 - 4}{x^2 - 2x}\)  
    \(\dfrac{x^2 - 9}{x^2 - 6x + 9}\)  
    \(\dfrac{5x^2 - 10x}{x(x - 2)}\)  
    \(\dfrac{2x^2 - 8}{4x}\)  
    \(\dfrac{x^2 - 16}{x^2 - 4x + 4}\)  
    \(\dfrac{6x^2 - 3x}{3x}\)  
    \(\dfrac{x^2 + 5x + 6}{x^2 + 2x}\)  
    \(\dfrac{2}{x} + \dfrac{3}{x + 1}\)  
    \(\dfrac{4}{x + 2} - \dfrac{2}{x + 3}\)  
    \(\dfrac{3}{x} + \dfrac{5}{x + 2}\)  
    \(\dfrac{1}{x + 1} - \dfrac{1}{x + 3}\)  
    \(\dfrac{2x}{x + 3} - \dfrac{3}{x + 2}\)  
    \(\dfrac{5}{x - 1} + \dfrac{7}{x + 1}\)  
    \(\dfrac{2x}{x + 4} + \dfrac{3}{x + 2}\)  
    . \(\dfrac{x + 3}{x + 1} - \dfrac{x - 1}{x + 2}\)  
    \(\dfrac{3x + 5}{x + 2} - \dfrac{x + 2}{x}\)  

    Combo Simplification Practice is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?