Combo Simplification Practice
- Page ID
- 160069
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Simplify.
\(3x + 5x\) | \(\frac{2}{3}(3x + 6) - 4x\) | ||
\(2a - 4a + 7\) | \(\frac{5}{2}x - \frac{3}{2}x\) | ||
\(\frac{1}{2}x - \frac{3}{4}x + 1\) | \(4(a - b) + 2b\) | ||
\(4y^2 + 2y - 6y^2 + 5\) | \(3x + \frac{1}{2}(4x - 6)\) | ||
\(5x - 3x + 2\) | \(6 - 2(2x + 1)\) | ||
\(\sqrt{16} + x^2\) | \(\sqrt{25} + x^2 - 3\) | ||
\(3(x + 2)\) | \(2a + 3b - a + 2b\) | ||
\(\frac{1}{3}(3x + 6)\) | \(6x + \frac{1}{2}(4x - 2)\) | ||
\(4x^2 - 2x + 6 - 3x^2\) | \(x^2 + 2x - x^2 + 3\) | ||
\(2(a + b) - 3a\) | \(\frac{1}{4}x + \frac{3}{4}x\) | ||
\(5 - 3(2x - 1)\) | \(4(a + b) - 3(a - b)\) |
FOIL or Factor:
\((x + 2)(x + 3)\) | \(x^2 + 5x + 6\) | ||
\((2x - 5)(x + 4)\) | \(2x^2 - 8x + 6\) | ||
\((3a + 4)(2a - 1)\) | \(a^2 - 9a + 14\) | ||
\((x - 6)(x + 7)\) | \(x^2 - 7x + 10\) | ||
\((5y + 2)(3y - 1)\) | \(3y^2 + 5y - 2\) | ||
\((x + 2)(x - 1)(x + 3)\) | \(x^2 + 4x - 12\) | ||
\((2x - 3)(x + 4)(x - 1)\) | \(2a^2 - 3a - 5\) | ||
\((a + 1)(a - 2)(a + 3)\) | \(x^2 - 10x + 21\) | ||
\((y + 2)(y - 3)(y + 4)\) | \(a^2 - 4a + 3\) | ||
\((2x + 1)(x - 2)(x + 5)\) | \(x^2 - 11x + 24\) |
Simplify.
\(\dfrac{2x^2 + 4x}{2x}\) | |
\(\dfrac{3x^2 - 12}{3x}\) | |
\(\dfrac{x^2 - 4}{x^2 - 2x}\) | |
\(\dfrac{x^2 - 9}{x^2 - 6x + 9}\) | |
\(\dfrac{5x^2 - 10x}{x(x - 2)}\) | |
\(\dfrac{2x^2 - 8}{4x}\) | |
\(\dfrac{x^2 - 16}{x^2 - 4x + 4}\) | |
\(\dfrac{6x^2 - 3x}{3x}\) | |
\(\dfrac{x^2 + 5x + 6}{x^2 + 2x}\) |
\(\dfrac{2}{x} + \dfrac{3}{x + 1}\) | |
\(\dfrac{4}{x + 2} - \dfrac{2}{x + 3}\) | |
\(\dfrac{3}{x} + \dfrac{5}{x + 2}\) | |
\(\dfrac{1}{x + 1} - \dfrac{1}{x + 3}\) | |
\(\dfrac{2x}{x + 3} - \dfrac{3}{x + 2}\) | |
\(\dfrac{5}{x - 1} + \dfrac{7}{x + 1}\) | |
\(\dfrac{2x}{x + 4} + \dfrac{3}{x + 2}\) | |
. \(\dfrac{x + 3}{x + 1} - \dfrac{x - 1}{x + 2}\) | |
\(\dfrac{3x + 5}{x + 2} - \dfrac{x + 2}{x}\) |