Skip to main content
Mathematics LibreTexts

8.6E Exercises

  • Page ID
    158768
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Basic Simplification

    Simplify the expressions as instructed.

    1. FOIL and simplify: \( (1-\sin x)(1+\sin x) \)
    2. FOIL and simplify: \( (\cos \theta + \sin \theta)^2 \)
    3. Convert to sines and cosines and simplify: \( \frac{\sin x}{\tan x} \)
    4. Convert to sines and cosines and simplify: \( \cos^2 \theta + \frac{1}{\csc^2 \theta} \)
    5. Convert to sines and cosines and simplify: \( \sin x \tan x + \cos x\)
    6. Convert to sines and cosines and simplify: \( \frac{\sin \theta}{\cot \theta} + \cos \theta \)
    7. Show the steps simplifying \( \frac{\tan \theta}{\csc \theta} \cos \theta \) to \( \sin^2 \theta\).
    Answer
    1. \( 1 - \sin^2 x \)
    2. \( 1 + 2 \cos \theta \sin \theta \)
    3. \( \cos x\)
    4. \( 1\)
    5. \( \frac{1}{\cos x}\) or \( \sec x\)
    6. \( \frac{1}{\cos \theta} \) or \( \sec \theta\)
    7. \( \frac{\tan \theta}{\csc \theta} \cos \theta = \dfrac{ \frac{\sin \theta}{\cos\theta}}{\frac{1}{\sin\theta}}\cos \theta = \frac{\sin^2 \theta}{\cos \theta} \cos \theta = \sin^2 \theta \)
    Manipulating and Simplifying Trig Expressions

    1. Write the expression \( \dfrac{\sin x + x}{\cos x}\) as two terms involving \( \tan x\) and/or \(\sec x\).

    2. Write the expression \( \dfrac{\sin \theta}{\cos \theta} + \dfrac{\cos \theta}{1+\sin \theta}\) as a single fraction term and then simplify as far as possible.

    3. Write the expression \( \dfrac{1}{1-\sin x} - \dfrac{1}{1+\sin x} \) as a single simplified term involving \( \tan x \) and/or \(\sec x\).

    4. Write the expression \( \csc \theta + \cot \theta\) as a single fraction term involving \(\sin \theta\) and/or \(\cos \theta\)

    5. Substitute \( \cos \theta\) for \(x\) in the expression \( \sqrt{ x^2 - 1} \) and simplify using the Pythagorean Identity (assume \( \theta\) is an angle such that \( \sin \theta \geq 0\)).

    Answer
    1. \( \tan x + x \sec x \)
    2. \( \sec \theta\)
    3. \( 2 \tan x \sec x \)
    4. \( \dfrac{1+\cos \theta}{\sin \theta}\)
    5. \( \sqrt{ \cos^2 \theta - 1} = \sqrt{\sin^2 \theta} = \sin \theta \)
    Using Sum/Difference Formulas

    (Make sure to do all of these.)

    1. Simplify \(\sin\left( x + \pi \right)\).

    2. Simplify \( \cos \left( \frac{\pi}{2} - \theta \right) \). (This is called a cofunction identity and is demonstrating the periodic behavior of cosine.)

    3. Find a triple-angle formula for \(\sin(3A)\) by writing \( 3A = 2A + A\) and using a sum formula and double angle formula.

    4. Use a sum formula backwards to evaluate \( \sin 15^\circ \cos 30^\circ + \cos 15^\circ \sin 30^\circ \) even though \( 15^\circ\) isn't a "typical" angle we have memorized.

    5. (This is an expression that could show up in Calc I.) Plug in \(f(x) = \sin x\) to the expression

    \[ \frac{ f(x + h) - f(x)}{h} \notag \]

    and simplify until it looks like this: \( \sin x \left( \dfrac{\cos h - 1}{h} \right) + \cos x \left( \dfrac{ \sin h}{h} \right) \).

    Answer
    1. \( \sin x \)
    2. \( \cos x\)
    3. \( 4\sin A \cos^2 A - \sin A \)
    4. This is equivalent to \( \sin (15^\circ +30^\circ) = \sin( 45^\circ\) = \frac{1}{\sqrt{2}} \).
    5. Plugged in, you should have \( \dfrac{ \sin(x+h) - \sin x}{h} \), and you use the sum formula on the \( \sin(x+h)\) term. Then algebraically manipulate by factoring, splitting fractions, etc...
    Formulas for Lowing Powers

    The results of these problems provide a formula you can use to get rid of a squared trig term and replace it with some trig term to the first power only.

    1. Use a double-angle formula to find an expression equivalent to \( \sin^2 x\) that involves \( \cos 2x\).
    2. Use a double-angle formula to find an expression equivalent to \( \cos^2 x\) that involves \( \cos 2x \).
    3. Use the formulas you derived to evaluate \(\sin^2 \left(\frac{\pi}{12}\right)\) even though it's not a "typical" angle.
    Answer
    1. Using \( \cos 2x = 1 - 2\sin^2 x\), we get \( \sin^2 x = \frac{ 1-\cos 2x}{2} \).
    2. \( \cos^2 x = \frac{ 1+ \cos 2x}{2}\)
    3. \( \frac{1}{2} - \frac{\sqrt{3}}{4}\) or \( \frac{2 - \sqrt{3}}{4}\) if you prefer.
    Product-Sum Formulas

    The results of these problems provide a way to rewrite a product of trig functions as a sum.

    1. Recall that two equations can be added to form a new, also true, equation. That is,
      \[ A = B \text{ and } C = D \quad \implies \quad A+C = B+D. \notag \]
      Use this fact to add the sum formula for sine to the difference formula for sine.
    2. Simplify the result so that one side has a single term involving \( \sin A \cos B\). Fully isolate this term to find a formula
      \[ \sin A \cos B = ... \notag \]
    3. Use this formula to evaluate \( \sin\left( \frac{\pi}{8} \right) \cos \left( \frac{\pi}{8} \right) \) even though \(\pi/8\) isn't a "typical" angle.
    Answer
    1. \( \sin(A+B) + \sin(A-B) = \sin A \cos B + \cos A \sin B + \sin A \cos B - \cos A \sin B \)
    2. \( \sin A \cos B = \frac{1}{2}(\sin(A+B) + \sin(A-B)) \)
    3. \( \frac{1}{2\sqrt{2}}\) or, rationalized, \( \frac{\sqrt{2}}{4} \).
    Fill-in-the-Blanks Practice for Memorization

    Fill in the blanks in the identities below.

    1. \( \sin^2 x + [ \quad \quad] = 1 \).
    2. \( \tan^2 x + 1 = [ \quad \quad]\).
    3. \( [ \quad \quad] + \cot^2 x = \csc^2 x \).
    4. \( \sin (A+B) = \sin A \cos B \: [\quad] \cos A \sin B \).
    5. \( \sin (A- B) = \sin A \cos B \: [\quad] \cos A \sin B \).
    6. \( [ \quad \quad ] = \cos A \cos B - \sin A \sin B \).
    7. \( \cos (A-B) = [ \quad \quad ] + [\quad \quad] \).
    8. \( [ \quad \quad ] = \cos^2 A - \sin^2 A \).
    9. \( \sin 2A = [\quad \quad] \).
    Answer

    After trying from scratch, check your answers against the previous section. Rinse and repeat.


    8.6E Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?