Skip to main content
Mathematics LibreTexts

Chapter 7: The Fatou Lemmas

  • Page ID
    208227
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Since integrals can be thought of as limits of sums, the finite subadditivity of limit superior and finite superadditivity of limit inferior carry forward to Lebesgue delta integrals. These generalisations are called the Fatou lemmas.

    Theorem (The Fatou Lemma)

    Suppose that \(\{f_n\}_{n\in \mathbb{N}}\) is a sequence of Lebesgue delta measurable functions \(f_n: \mathbb{T}\to [0, \infty]\). Then

    \[ \int\limits_{\mathbb{T}}\liminf\limits_{n\to\infty}f_n\Delta \mu_\Delta\leq \liminf\limits_{n\to\infty} \int\limits_{\mathbb{T}}f_n\Delta\mu_\Delta. \notag\]

    In particular, if \(\{f_n\}_{n\in \mathbb{N}}\) is a sequence of nonnegative Lebesgue delta measurable functions and \(f_n\to f\) as \(n\to \infty\) \(\mu_\Delta\)-a.e., then

    \[ \int\limits_{\mathbb{T}}f\Delta\mu_\Delta\leq \liminf\limits_{n\to\infty}\int\limits_{\mathbb{T}}f_n\Delta\mu_\Delta. \notag\]

    Proof

    Define

    \[ g_n(t)=\inf\limits_{m\geq n}f_m(t),\quad t\in \mathbb{T},\quad n\in \mathbb{N}. \notag\]

    Then \(\{g_n\}_{n\in \mathbb{N}}\) is a pointwise increasing sequence and

    \[ \lim\limits_{n\to\infty} g_n= \liminf\limits_{n\to\infty} f_n. \notag\]

    We apply the Monotone Convergence Theorem to the sequence \(\{g_n\}_{n\in \mathbb{N}}\) to get

    \[ \begin{aligned} \lim\limits_{n\to\infty}\int\limits_{\mathbb{T}}g_n\Delta\mu_\Delta=& \int\limits_{\mathbb{T}}\lim\limits_{n\to\infty} g_n\Delta \mu_\Delta\\ =& \int\limits_{\mathbb{T}}\liminf\limits_{n\to\infty}f_n \Delta\mu_\Delta. \end{aligned} \notag\]

    On the other hand, we have

    \[ 0\leq g_n\leq f_m,\quad m\geq n. \notag\]

    Then

    \[ \int\limits_{\mathbb{T}}g_n\Delta\mu_\Delta\leq \int\limits_{\mathbb{T}}f_m\Delta\mu_\Delta,\quad m\geq n. \notag\]

    Thus, we have

    \[ \int\limits_{\mathbb{T}}g_n\Delta\mu_\Delta\leq \inf\limits_{m\geq n}\int\limits_{\mathbb{T}}f_m\Delta\mu_\Delta, \notag\]

    whereupon

    \[ \lim\limits_{n\to\infty}\int\limits_{\mathbb{T}}g_n\Delta\mu_\Delta\leq \liminf\limits_{n\to\infty}\int\limits_{\mathbb{T}}f_n\Delta\mu_\Delta \notag\]

    and

    \[ \int\limits_{\mathbb{T}}\liminf\limits_{n\to\infty} f_n\Delta\mu_\Delta\leq \liminf\limits_{n\to\infty}\int\limits_{\mathbb{T}}f_n\Delta\mu_\Delta, \notag\]

    which completes the proof.

    Corollary (The Reverse Fatou Lemma)

    Suppose that \(\{f_n\}_{n\in \mathbb{N}}\) is a sequence of Lebesgue delta measurable functions \(f_n: \mathbb{T}\to [0, \infty]\) such that there exists a nonnegative Lebesgue delta measurable function \(g\) for which

    \[ f_n\leq g,\quad n\in \mathbb{N}. \notag\]

    Then

    \[ \limsup\limits_{n\to\infty} \int\limits_{\mathbb{T}}f_n\Delta\mu_\Delta\leq \int\limits_{\mathbb{T}}\limsup\limits_{n\to\infty}f_n\Delta \mu_\Delta. \notag\]

    Proof

    Define

    \[ h_n=g-f_n,\quad n\in \mathbb{N}. \notag\]

    Applying the Fatou Lemma to the sequence \(\{h_n\}_{n\in \mathbb{N}}\), we find

    \[ \int\limits_{\mathbb{T}}\liminf\limits_{n\to\infty}(g-f_n)\Delta\mu_\Delta\leq \limsup\limits_{n\to\infty}\int\limits_{\mathbb{T}}(g-f_n)\Delta\mu_\Delta, \notag\]

    or

    \[ \int\limits_{\mathbb{T}}g\Delta\mu_\Delta +\int\limits_{\mathbb{T}}\liminf\limits_{n\to\infty}(-f_n)\Delta\mu_\Delta \leq \int\limits_{\mathbb{T}}g\Delta\mu_\Delta +\liminf\limits_{n\to\infty}\left(-\int\limits_{\mathbb{T}}f_n\Delta\mu_\Delta\right), \notag\]

    or

    \[ -\int\limits_{\mathbb{T}}\limsup\limits_{n\to\infty}f_n\Delta\mu_\Delta\leq -\limsup\limits_{n\to\infty}\int\limits_{\mathbb{T}}f_n\Delta\mu_\Delta, \notag\]

    whereupon we get the desired result.

    Corollary

    Let \(f, g: \mathbb{T}\to [0, \infty]\) be nonnegative Lebesgue delta measurable functions and \(\alpha, \beta\geq 0\). Then

    \[ \int\limits_{\mathbb{T}}(\alpha f+\beta g)\Delta\mu_\Delta=\alpha\int\limits_{\mathbb{T}}f\Delta\mu_\Delta+\beta \int\limits_{\mathbb{T}}g\Delta \mu_\Delta. \notag\]

    Proof

    Firstly, we will prove that \begin{equation} \label{51}\int\limits_{\mathbb{T}}(f+g)\Delta\mu_\Delta=\int\limits_{\mathbb{T}}f\Delta\mu_\Delta+\int\limits_{\mathbb{T}}g\Delta\mu_\Delta. \end{equation} Consider the pointwise increasing sequences of simple functions \(\{\phi_n\}_{n\in \mathbb{N}}\) and \(\{\psi_n\}_{n\in \mathbb{N}}\) such that \(\phi_n\to f\) and \(\psi_n\to g\) as \(n\to\infty\). Then

    \[ \phi_n+\psi_n\to f+g\quad \mbox{as}\quad n\to\infty. \notag\]

    By the Monotone Convergence Theorem, we get

    \[ \begin{aligned} \int\limits_{\mathbb{T}}(f+g)\Delta\mu_\Delta=& \lim\limits_{n\to\infty}I(\phi_n+\psi_n)\\ =& \lim\limits_{n\to\infty}(I(\phi_n)+I(\psi_n))\\ =& \lim\limits_{n\to\infty}I(\phi_n)+\lim\limits_{n\to\infty}I(\psi_n)\\ =& \int\limits_{\mathbb{T}} f\Delta\mu_\Delta+\int\limits_{\mathbb{T}}g\Delta\mu_\Delta. \end{aligned} \notag\]

    Now, we apply \eqref{51} for the functions \(\alpha f\) and \(\beta g\) and using the homogeneity of the Lebesgue delta integral, we find

    \[ \begin{aligned} \int\limits_{\mathbb{T}}((\alpha f)+(\beta g))\Delta\mu_\Delta=& \int\limits_{\mathbb{T}}\alpha f\Delta\mu_\Delta+\int\limits_{\mathbb{T}}\beta g\Delta\mu_\Delta\\ =& \alpha \int\limits_{\mathbb{T}}f \Delta\mu_\Delta+\beta \int\limits_{\mathbb{T}}g\Delta \mu_\Delta. \end{aligned} \notag\]

    This completes the proof.


    This page titled Chapter 7: The Fatou Lemmas is shared under a not declared license and was authored, remixed, and/or curated by Svetlin G. Georgiev.

    • Was this article helpful?