Chapter 5: Delta Differentiation
- Page ID
- 209037
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)We conclude this chapter with a theoretical discussion of the error in the delta derivative of a function when it is approximated by
the delta derivative of the related interpolation polynomial.
Suppose that \(n\geq 0 \), \(a, b\in \mathbb{T} \), \(a<b \), \(x_j\in [a, b] \), \(j\in \{0, 1, \ldots, n\} \), are distinct and \(f: [a, b]\to \mathbb{R} \), \(p_n: [a, b]\to \mathbb{R} \)is a polynomial of degree \(n \)interpolating \(f \)at the points \(x_j\in [a, b] \), \(j\in \{0, 1, \ldots, n\} \)and \(f^{\Delta^k}(x) \)exist for any \(x\in [a, b] \)and for any \(k\in \{1, \ldots, n+1\} \). Then for any \(x\in [a, b] \)there exists \(\xi=\xi(x)\in (a, b) \)and distinct points \(\eta_j \), \(j\in \{1, \ldots, n\} \), in \((a, b) \), such that
\[
f^{\Delta}(x)-p_n^{\Delta}(x)= \frac{f^{\Delta^{n+1}}(\xi)}{\pi_{n}^{*\Delta^{n+1}}(\xi)}\pi_{n}^*(x), \quad x\in [a, b],
\notag\]
or
\[
H_{min, n+1}(\xi)\leq \frac{f^{\Delta}(x)-p_n^{\Delta}(x)}{\pi_{n}^*(x)}\leq H_{max, n+1}(\xi), \quad x\in [a, b],
\notag\]
where
\[\begin{aligned}
H_{max, n+1}(\xi)&=& \max\left\{ \frac{f^{\Delta^{n+1}}(\xi)}{\pi_{n}^{*\Delta^{n+1}}(\xi)}, \frac{f^{\Delta^{n+1}}(\rho(\xi))}{\pi_{n}^{*\Delta^{n+1}}(\rho(\xi))}\right\},\\ \\
H_{min, n+1}(\xi)&=& \min\left\{ \frac{f^{\Delta^{n+1}}(\xi)}{\pi_{n}^{*\Delta^{n+1}}(\xi)}, \frac{f^{\Delta^{n+1}}(\rho(\xi))}{\pi_{n}^{*\Delta^{n+1}}(\rho(\xi))}\right\},\\ \\
\pi_n^*(x)&=& (x-\eta_1)\ldots (x-\eta_n), \quad x\in [a, b],.
\end{aligned}\notag\]
Proof
Let \(p_n \)be the Lagrange interpolation polynomial for the function \(f \)with interpolation points \(x_j \), \(j\in \{0, 1, \ldots, n\} \). Then the function \(f-p_n \)has at least \(n+1 \)GZs in \([a, b] \). Hence and the Rolle theorem, it follows that there exist \(\eta_j \), \(j\in \{1, \ldots, n\} \), in \((a, b) \)which are GZs of the function \(f^{\Delta}-p_n^{\Delta} \). Define the function
\[
\chi(t)= f^{\Delta}(t)-p_n^{\Delta}(t)-\frac{f^{\Delta}(x)-p_n^{\Delta}(x)}{\pi_{n}^*(x)}\pi_{n}^*(t),\quad t\in [a, b].
\notag\]
Then
\[\begin{aligned}
\chi(\eta_j)&=& f^{\Delta}(\eta_j)-p_n^{\Delta}(\eta_j)-\frac{f^{\Delta}(x)-p_n^{\Delta}(x)}{\pi_{n}^*(x)}\pi_{n}^*(\eta_j)\\ \\
&=& f^{\Delta}(\eta_j)-p_n^{\Delta}(\eta_j)\\ \\
&=& 0, \quad x\in [a, b], \quad j\in \{0, 1, \ldots, n\},
\end{aligned}\notag\]
and \(\chi(x)=0, \quad x\in [a, b] \).
Thus, \(\chi: [a, b]\to \mathbb{R} \)has at least \(n+1 \)GZs. Hence and the Rolle theorem, it follows that \(\chi^{\Delta^{n}} \)has at least one GZ on \((a, b) \). Therefore there exists an \(\xi=\xi(x)\in (a, b) \)such that
\[
\chi^{\Delta^{n}}(\xi)=0\quad \text{or}\quad \chi^{\Delta^{n}}(\rho(\xi))\chi^{\Delta^{n}}(\xi)<0.
\notag\]
Note that
\[
\chi^{\Delta^{n}}(t)= f^{\Delta^{n+1}}(t)-\frac{f^{\Delta}(x)-p_n^{\Delta}(x)}{\pi_{n}^*(x)}\pi_{n}^{*\Delta^{n}}(t),\quad t\in [a, b].
\notag\]
1. Let \(\chi^{\Delta^{n}}(\xi)=0 \). Then
\[
f^{\Delta^{n+1}}(\xi)= \frac{f^{\Delta}(x)-p_n^{\Delta}(x)}{\pi_{n}^*(x)}\pi_{n}^{*\Delta^{n}}(\xi), \quad x\in [a, b],
\notag\]
or
\[\begin{aligned}
f^{\Delta}(x)-p_n^{\Delta}(x)&=& \frac{f^{\Delta^{n+1}}(\xi)}{\pi_{n}^{*\Delta^{n}}(\xi)}\pi_{n}^*(x)\\ \\
&=& \frac{f^{\Delta^{n+1}}(\xi)}{\pi_{n}^{*\Delta^{n}}(\xi)}\pi_{n}^*(x), \quad x\in [a, b].
\end{aligned}\notag\]
2. Let
\[
\chi^{\Delta^{n}}(\rho(\xi))\chi^{\Delta^{n}}(\xi)<0.
\notag\]
Then
\[\begin{aligned}
\chi^{\Delta^{n}}(\rho(\xi))&=& f^{\Delta^{n+1}}(\rho(\xi))-\frac{f^{\Delta}(x)-p_n^{\Delta}(x)}{\pi_{n}^*(x)}\pi_{n}^{*\Delta^{n}}(\rho(\xi)), \quad x\in [a, b],
\end{aligned}\notag\]
andf
\[
\chi^{\Delta^{n}}(\xi)= f^{\Delta^{n+1}}(\xi)-\frac{f^{\Delta}(x)-p_n^{\Delta}(x)}{\pi_{n}^*(x)}\pi_{n}^{*\Delta^{n}}(\xi), \quad x\in [a, b].
\notag\]
Hence,
\[\begin{aligned}
0&>& \chi^{\Delta^{n}}(\rho(\xi))\chi^{\Delta^{n}}(\xi)\\ \\
&=& \left(f^{\Delta^{n+1}}(\rho(\xi))-\frac{f^{\Delta}(x)-p_n^{\Delta}(x)}{\pi_{n}^*(x)}\pi_{n}^{*\Delta^{n}}(\rho(\xi))\right)\\ \\
&&\times \left(f^{\Delta^{n+1}}(\xi)-\frac{f^{\Delta}(x)-p_n^{\Delta}(x)}{\pi_{n}^*(x)}\pi_{n}^{*\Delta^{n}}(\xi)\right)\\ \\
&=& \left(\frac{f^{\Delta}(x)-p_n^{\Delta}(x)}{\pi_{n}^*(x)}\right)^2\pi_{n}^{*\Delta^{n}}(\rho(\xi))\pi_{n}^{*\Delta^{n}}(\xi)\\ \\
&&-\frac{f^{\Delta}(x)-p_n^{\Delta}(x)}{\pi_{n}^*(x)}\left(\pi_{n}^{*\Delta^{n}}(\rho(\xi))f^{\Delta^{n+1}}(\xi)+
\pi_{n}^{*\Delta^{n}}(\xi) f^{\Delta^{n+1}}(\rho(\xi))\right)\\ \\
&&+f^{\Delta^{n+1}}(\rho(\xi))f^{\Delta^{n+1}}(\xi), \quad x\in [a, b].
\end{aligned}\notag\]
Hence,
\[
H_{min, n+1}(\xi)\leq \frac{f^{\Delta}(x)-p_n^{\Delta}(x)}{\pi_{n}^*(x)}\leq H_{max, n+1}(\xi), \quad x\in [a, b].
\notag\]
This completes the proof.
Suppose that all conditions of above theorem hold. If
\[
\lim_{n\to\infty} \max_{x\in [a, b]}\left(\frac{f^{\Delta^{n+1}}(\xi)}{\pi_{n}^{*\Delta^{n}}(\xi)}\pi_{n}^*(x)\right)=0
\notag\]
and
\[
\lim_{n\to\infty} \max_{x\in [a, b]}\left(\frac{f^{\Delta^{n+1}}(\rho(\xi))}{\pi_{n}^{*\Delta^{n}}(\rho(\xi))}\pi_{n}^*(x)\right)=0,
\notag\]
then
\[
\lim_{n\to\infty}\max_{x\in [a, b]}|f^{\Delta}(x)-p_n^{\Delta}(x)|=0.
\notag\]


