2:The Riemann-Stieltjes Delta Integral
- Page ID
- 207600
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Consider a partition \(P=\{t_0, t_1, \ldots, t_n\}\in \mathcal{P}(I)\). For any \(j\in \{1, \ldots, n\}\), take \(\xi_j\in I_j\).
Let \(f\) be a function on \(I\) and \(g\) be a strictly increasing function on \(I\).
The Riemann-Stieltjes sum \(R(P, f, g)\) for the function \(f\) on the interval \(I\) with respect to the function \(g\) is defined as follows
\[
R(P, f, g)=\sum\limits_{j=1}^n f(\xi_j)\Delta g_j.
\]
Let \(g\) be a strictly increasing function on \(I\).
A function \(f\) on \(I\) is said to be Riemann-Stieltjes delta integrable on the interval \(I\) with respect to the function \(g\) if there exists a real number \(J\) such that for any \(\epsilon>0\) there exists a \(\delta=\delta(\epsilon)>0\) such that for any \(P\in \mathcal{P}_\delta (I)\) one has
\[
|R(P, f, g)-J|<\epsilon
\]
independent of the choice of \(\xi_j\in I_j\), \(j\in \{1, \ldots, n\}\).
The number \(J\) is called the Riemann-Stieltjes delta integral of the function \(f\) on the interval \(I\) with respect to the function \(g\), also denoted as
\[
\mbox{RS}\int\limits_a^b f(t)\Delta g(t).
\]
The set of all Riemann-Stieltjes delta integrable functions on the interval \(I\) with respect to the function \(g\) is denoted by \(\mathcal{R}(g, I)\).
\begin{theorem}
Let \(f\) be a function on \(I\) and \(g\) be a strictly increasing function on \(I\). If \(f\in \mathcal{R}(g, I)\), then its Riemann-Stieltjes delta integral on the interval \(I\) with respect to the function \(g\) is unique.
Proof
Suppose the contrary, i.e., assume that we have two values for \(\mbox{RS}\int\limits_a^b f(t)\Delta g(t)\), namely \(J_1\) and \(J_2\). Fix \(\epsilon>0\) arbitrarily. By the definition for the Riemann-Stieltjes delta integral, it follows that there are \(\delta_1=\delta_1(\epsilon)>0\) and \(\delta_2=\delta_2(\epsilon)>0\) such that if \(P_1\in \mathcal{P}_{\delta_1}(I)\), \(P_2\in \mathcal{P}_{\delta_2}(I)\),
then one has
\[
|R(P_1, f, g)-J_1|<\frac{\epsilon}{2}
\]
and
\[
|R(P_2, f, g)-J_2|<\frac{\epsilon}{2}.
\]
Let \(\delta=\min\{\delta_1, \delta_2\}\). Then, if \(P\in \mathcal{P}_\delta (I)\), one has
\[
|R(P, f, g)-J_1|<\frac{\epsilon}{2}\]
and
\[
|R(P, f, g)-J_2|<\frac{\epsilon}{2}.
\]
Hence,
\[\begin{eqnarray*}
|J_1-J_2|&=& |J_1-R(P, f, g)+R(P, f, g)-J_2|\\ \\
&\leq& |R(P, f, g)-J_1|+|R(P, f, g)-J_2|\\ \\
&<& \frac{\epsilon}{2}+\frac{\epsilon}{2}\\ \\
&=& \epsilon.
\end{eqnarray*}\]
Thus,
\[
|J_1-J_2|<\epsilon \quad \mbox{for any}\quad \epsilon>0.
\]
This means
\[
|J_1-J_2|=0,
\]
which says that the two values of the Riemann-Stieltjes delta integral must be equal to each other. This completes the proof.
Let \(\mathbb{T}\), \(f\) and \(g\) be as in the third example of "The Darboux-Stieltjes Integral". Let also,
\[\begin{eqnarray*}
\xi_j&\in& I_j\\ \\
&=& [2^{j-1-n}, 2^{j-n})_{\mathbb{T}}\\ \\
&=& 2^{j-1-n}.
\end{eqnarray*}\]
Then, using the computations in the third and fourth examples of "The Darboux-Stieltjes Integral", we get
\[\begin{eqnarray*}
R(P, f, g)&=& \sum\limits_{j=1}^n f(\xi_j)\Delta g_j\\ \\
&=& \sum\limits_{j=1}^n 2^{j-1-n}\left(3\cdot 2^{2j-2n-2}\right)\\ \\
&=& \frac{3}{8}\sum\limits_{j=1}^n 2^{3j-3n}\\ \\
&=& \frac{3}{8}2^{-3n}\sum\limits_{j=1}^n 2^{3j}\\ \\
&=& \frac{3}{8}8^{-n}8\frac{8^n-1}{8-1}\\ \\
&=& \frac{3}{7}\left(1-8^{-n}\right).
\end{eqnarray*}\]
Hence,
\[\begin{eqnarray*}
\lim\limits_{n\to \infty}R(P, f, g)&=& \lim\limits_{n\to \infty} \frac{3}{7}\left(1-8^{-n}\right)\\ \\
&=& \frac{3}{7}.
\end{eqnarray*}\]
Thus,
\[
\mbox{RS}\int\limits_0^1 t \Delta t^2=\frac{3}{7}.
\]