5: Some Inequalities for the Riemann-Stieltjes Delta Integral
- Page ID
- 207603
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)We will deduct some inequalities for Riemann-Stieltjes delta integrals. We will start with following one.
Let \(g\) be a strictly increasing function on \(I\), \(f_1, f_2\in \mathcal{R}(g, I)\) and \(f_1\leq f_2\) on \(I\). Then
\[\begin{equation}
\label{39} \int\limits_a^b f_1(t)\Delta g(t)\leq \int\limits_a^b f_2(t)\Delta g(t).
\end{equation}\]
Proof
Since \(f_1, f_2\in \mathcal{R}(g, I)\), it follows that \(f_2-f_1\in \mathcal{R}(g, I)\). Moreover, we have
\[
f_2(t)-f_1(t)\geq 0,\quad t\in I.
\]
Then, we obtain
\[
\int\limits_a^b (f_2(t)-f_1(t))\Delta g(t)\geq 0.
\]
Now, we find
\[\begin{eqnarray*}
0&\leq& \int\limits_a^b (f_2(t)-f_1(t))\Delta g(t)\\ \\
&=& \int\limits_a^b f_2(t)\Delta g(t)-\int\limits_a^b f_1(t)\Delta g(t),
\end{eqnarray*}\]
whereupon we get the inequality \eqref{39}. This completes the proof.
Let \(g\) be a strictly increasing function on \(I\) and \(f\in \mathcal{R}(g, I)\). Then \(|f|\in \mathcal{R}(g, I)\) and we have the "triangle inequality" for Riemann-Stieltjes delta integrals
\[
\left|\int\limits_a^b f(t)\Delta g(t)\right|\leq \int\limits_a^b |f(t)|\Delta g(t).
\]
Proof
Fix \(\epsilon>0\) arbitrarily. Since \(f\in \mathcal{R}(g, I)\), there is a partition \(P=\{t_0, t_1, \ldots, t_n\}\) of \(I\) such that
\[
U(P, f, g)-L(P, f, g)<\epsilon.
\]
Define
\[\begin{eqnarray*}
m_j&=& \inf\limits_{t\in I_j} f(t),\\ \\
M_j&=& \sup\limits_{t\in I_j}f(t),\\ \\
m_j^\prime &=& \inf\limits_{t\in I_j} |f(t)|,\\ \\
M_j^\prime&=& \sup\limits_{t\in I_j} |f(t)|,\quad j\in \{1, \ldots, n\}.
\end{eqnarray*}\]
Then
\[\begin{eqnarray*}
m_j&\leq &f(t)\leq M_j,\\ \\
-m_j&\geq& f(t)\geq -M_j,\quad t\in I_j,\quad j\in \{1, \ldots, n\}.
\end{eqnarray*}\]
Combining these two inequalities, we find
\[
m_j-M_j\leq f(t)-f(y)\leq M_j-m_j,\quad t, y\in I_j,\quad j\in \{1, \ldots, n\}.
\]
Hence,
\[
|f(t)-f(y)|\leq M_j-m_j,\quad t, y\in I_j,\quad j\in \{1, \ldots, n\}.
\]
Applying the reverse triangle inequality
\[\begin{eqnarray*}
|f(t)|-|f(y)|&\leq& |f(t)-f(y)|\\ \\
&\leq& M_j-m_j,\quad t, y\in I_j,\quad j\in \{1, \ldots, n\}.
\end{eqnarray*}\]
Thus, \(M_j-m_j\) is an upper bound of \(|f(t)|-|f(y)|\), \(t, y\in I_j\), \(j\in \{1, \ldots, n\}\). On the other hand, we have
\[\begin{eqnarray*}
\sup\limits_{t, y\in I_j}\left(|f(t)|-|f(y)|\right)&=& \sup\limits_{t\in I_j}|f(t)|-\inf\limits_{y\in I_j}|f(y)|\\ \\
&=& M_j^\prime-m_j^\prime,\quad j\in \{1, \ldots, n\}.
\end{eqnarray*}\]
Hence, we have the inequality
\[
M_j^\prime-m_j^\prime\leq M_j-m_j,\quad j\in \{1, \ldots, n\}.
\]
For the difference of the upper and lower Darboux-Stieltjes sums of \[|f|\] with respect to the partition \[P\], we get
\[\begin{eqnarray*}
U(P, |f|, g)-L(P, |f|, g)&=& \sum\limits_{j=1}^n (M_j^\prime-m_j^\prime)\Delta g_j\\ \\
&\leq& \sum\limits_{j=1}^n (M_j-m_j)\Delta g_j\\ \\
&=& U(P, f, g)-L(P, f, g)\\ \\
&<& \epsilon,
\end{eqnarray*}\]
which is the \(\epsilon\)-criterion. Thus, \(|f|\in \mathcal{R}(g, I)\). Now, we will prove the "triangle inequality" for Riemann-Stieltjes delta integrals. Note that
\[
-|f|\leq f\leq |f|\quad \mbox{on}\quad I.
\]
Now, we find
\[
-\int\limits_a^b |f(t)|\Delta g(t)\leq \int\limits_a^b f(t)\Delta g(t)\leq \int\limits_a^b |f(t)|\Delta g(t),
\]
whereupon
\[
\left|\int\limits_a^b f(t)\Delta g(t)\right|\leq \int\limits_a^b |f(t)|\Delta g(t).
\]
This completes the proof.
Let \(g\) be a strictly increasing function on \(I\), \(f\in \mathcal{R}(g, I)\) and
\[
m\leq f(t)\leq M,\quad t\in I.
\]
Then
\[
m(g(b)-g(a))\leq \int\limits_a^b f(t)\Delta g(t)\leq M(g(b)-g(a)).
\]
Proof
We have
\[\begin{eqnarray*}
m(g(b)-g(a))&\leq& m\sum\limits_{j=1}^n \Delta g_j\\ \\
&\leq& L(P, f, g)\\ \\
&\leq& U(P, f, g)\\ \\
&\leq& M\sum\limits_{j=1}^n \Delta g_j\\ \\
&=& M(g(b)-g(a)).
\end{eqnarray*}\]
Using that \(f\in \mathcal{R}(g, I)\), we get
\[\begin{eqnarray*}
m(g(b)-g(a))&\leq& \sup\limits_{P\in \mathcal{P}(I)}L(P, f, g)\\ \\
&=& \int\limits_a^b f(t)\Delta g(t)\\ \\
&\leq& \inf\limits_{P\in \mathcal{P}(I)} U(P, f, g)\\ \\
&\leq&M(g(b)-g(a)).
\end{eqnarray*}\]
This completes the proof.
Let \(g\) be a strictly increasing function on \(I\), \(g^\Delta\) exists and is continuous on \(I\), and \(f\) is a bounded function on \(I\). Then \(f\in \mathcal{R}(g, I)\) if and only if \(fg^\Delta \in \mathcal{R}(E, I)\). Moreover,
\[\begin{equation}
\label{47}
\int\limits_a^b f(t)\Delta g(t)= \int\limits_a^b f(t)g^\Delta(t)\Delta t.
\end{equation}\]
Here \(E\) is the identity function, i.e., \(E(t)=t\), \(t\in I\).
Proof
We will prove the implications separately.
1. Let \(f\in \mathcal{R}(g, I)\). Because \(g^\Delta\) is continuous on \(I\), it is bounded on \(I\) and Riemann delta integrable on \(I\). Since \(f\) is a bounded function on \(I\), there is a positive constant \(K\) such that
\[
|f(t)|\leq K,\quad t\in I.
\]
Fix \(\epsilon>0\). Since \(f\in \mathcal{R}(g, I)\), there is a partition \(P_1\in \mathcal{P}(I)\) such that
\[\begin{equation}
\label{43} U(P_1, f, g)-L(P_1, f, g)<\frac{\epsilon}{2}.
\end{equation}\]
Because \(g^\Delta\) is Riemann delta integrable on \(I\), there is a partition \(P_2\in \mathcal{P}(I)\) so that
\[\begin{equation}
\label{44} U(P_2, g^\Delta, E)-L(P_2, g^\Delta, E)<\frac{\epsilon}{2K}.
\end{equation}\]
Let \(P=P_1\cup P_2=\{t_0, t_1, \ldots, t_n\}\). Then \(P\) is a refinement of \(P_1\) and \(P_2\). Then, we have the following inequalities
\[\begin{eqnarray*}
U(P, f, g)&\leq& U(P_1, f, g),\\ \\
L(P, f, g)&\geq& L(P_1, f, g),\\ \\
U(P, g^\Delta, E)&\leq& U(P_2, g^\Delta, E),\\ \\
L(P, g^\Delta, E)&\geq& L(P_2, g^\Delta, E).
\end{eqnarray*}\]
Hence, using \eqref{43} and \eqref{44}, we find
\[\begin{equation}
\label{45}
\begin{array}{lll}
U(P, f, g)-L(P, f, g)&\leq& U(P_1, f, g)-L(P_1, f, g)\\ \\
&<& \frac{\epsilon}{2}
\end{array}
\end{equation}\]
and
\[\begin{equation}
\label{46}
\begin{array}{lll}
U(P, g^\Delta, E)-L(P, g^\Delta, E)&\leq& U(P_2, g^\Delta, E)-L(P_2, g^\Delta, E)\\ \\
&<& \frac{\epsilon}{2K},
\end{array}
\end{equation}\]
respectively. Introduce the quantities
\[\begin{eqnarray*}
M_j^f&=& \sup\limits_{t\in I_j}f(t),\\ \\
M_j^{g^\Delta}&=& \sup\limits_{t\in I_j}g^\Delta(t),\\ \\
MP_j^{fg^\Delta}&=& \sup\limits_{t\in I_j}(fg^\Delta)(t),\\ \\
m_j^f&=& \inf\limits_{t\in I_j}f(t),\\ \\
m_j^{g^\Delta}&=& \inf\limits_{t\in I_j}g^\Delta(t),\\ \\
m_j^{fg^\Delta}&=& \inf\limits_{t\in I_j}(fg^\Delta)(t),\quad j\in \{1, \ldots, n\}.
\end{eqnarray*}\]
By the delta mean value theorem, it follows that for each \(j\in \{1, \ldots, n\}\) there are \(\xi_j, \tau_j\in [t_{j-1}, t_j]\) such that
\[
g^\Delta(\tau_j)\Delta t_j\leq \Delta g_j\leq g^\Delta(\xi_j)\Delta t_j.
\]
Then, for any \(j\in \{1, \ldots, n\}\) and any \(y\in I_j\), one has
\[\begin{eqnarray*}
(fg^\Delta)(\tau_j)-(fg^\Delta)(y)&=& f(\tau_j)g^\Delta(\tau_j)-f(y)g^\Delta(y)\\ \\
&=& f(\tau_j)g^\Delta(\tau_j)-f(y)g^\Delta(\tau_j)+f(y)g^\Delta(\tau_j)-f(y)g^\Delta(y)\\ \\
&=& (f(\tau_j)-f(y))g^\Delta(\tau_j)+f(y)(g^\Delta(\tau_j)-g^\Delta(y))\\ \\
&\leq& |f(\tau_j)-f(y)|g^\Delta(\tau_j)+|f(y)||g^\Delta(\tau_j)-g^\Delta(y)|\\ \\
&\leq& (M_j^f-m_j^f)\frac{\Delta g_j}{\Delta t_j}+K\left(M_j^{g^\Delta}-m_j^{g^\Delta}\right),
\end{eqnarray*}\]
which is an upper bound of \((fg^\Delta)(t)-(fg^\Delta)(z)\) for \(t, z\in I_j\), \(j\in \{1, \ldots, n\}\). On the other hand, we have
\[\begin{eqnarray*}
\sup\limits_{t, z\in I_j}\left((fg^\Delta)(t)-(fg^\Delta)(z)\right)&=& \sup\limits_{t\in I_j}(fg^\Delta)(t)+\sup\limits_{z\in I_j}\left(-(fg^\Delta)(z)\right)\\ \\
&=& M_j^{fg^\Delta}-\inf\limits_{z\in I_j}(fg^\Delta)(z)\\ \\
&=& M_j^{fg^\Delta}-m_j^{fg^\Delta},\quad j\in \{1, \ldots, n\}.
\end{eqnarray*}\]
Consequently
\[
M_j^{fg^\Delta}-m_j^{fg^\Delta}\leq (M_j^f-m_j^f)\frac{\Delta g_j}{\Delta t_j}+K\left(M_j^{g^\Delta}-m_j^{g^\Delta}\right),\quad j\in \{1, \ldots, n\}.
\]
Hence, applying \eqref{45} and \eqref{46}, we arrive at
\[\begin{eqnarray*}
U(P, fg^\Delta, E)-L(P, fg^\Delta, E)&=& \sum\limits_{j=1}^n \left(M_j^{fg^\Delta}-m_j^{fg^\Delta}\right)\Delta t_j
\end{eqnarray*}\]
\[\begin{eqnarray*}
&\leq& \sum\limits_{j=1}^n \left((M_j^f-m_j^f)\frac{\Delta g_j}{\Delta t_j}+K\left(M_j^{g^\Delta}-m_j^{g^\Delta}\right)\right)\Delta t_j\\ \\
&=& \sum\limits_{j=1}^n(M_j^f-m_j^f)\Delta g_j+K\sum\limits_{j=1}^n\left(M_j^{g^\Delta}-m_j^{g^\Delta}\right)\Delta t_j\\ \\
&=& U(P, f, g)-L(P, f, g)+K\left(U(P, g^\Delta, E)-L(P, g^\Delta, E)\right)\\ \\
&<& \frac{\epsilon}{2}+K\frac{\epsilon}{2K}\\ \\
&=& \frac{\epsilon}{2}+\frac{\epsilon}{2}\\ \\
&=& \epsilon,
\end{eqnarray*}\]
which is the \(\epsilon\)-criterion. This implies that \(fg^\Delta\in \mathcal{R}(E, I)\). Now, we will prove that \eqref{47} holds. We have
\[\begin{eqnarray*}
f(\tau_j)g^\Delta(\tau_j)&\leq& M_j^fg^\Delta(\tau_j)\\ \\
&\leq& M_j^f \frac{\Delta g_j}{\Delta t_j},\quad j\in \{1, \ldots, n\}.
\end{eqnarray*}\]
Thus, \(M_j^f \frac{\Delta g_j}{\Delta t_j}\) is an upper bound of \(f(t)g^\Delta(t)\), \(t\in I_j\), \(j\in \{1, \ldots, n\}\). Therefore
\[
M_j^{fg^\Delta}\leq M_j^f \frac{\Delta g_j}{\Delta t_j},\quad j\in \{1, \ldots, n\}.
\]
Hence,
\[
U(P, fg^\Delta, E)\leq U(P, f, g).
\]
Taking infimum of both sides of the last inequality over \(P\in \mathcal{P}(I)\), we get
\[\begin{equation}
\label{43.1} \int\limits_a^b f(t)g^\Delta(t)\Delta t\leq \int\limits_a^b f(t)\Delta g(t).
\end{equation}\]
On the other hand, we have
\[
f(\xi_j)g^\Delta(\xi_j)\geq m_j^f \frac{\Delta g_j}{\Delta t_j},\quad j\in \{1, \ldots, n\}.
\]
Thus, \(m_j^f \frac{\Delta g_j}{\Delta t_j}\), \(j\in \{1, \ldots, n\}\), is a lower bound of \(f(t)g^\Delta(t)\), \(t\in I_j\), \(j\in \{1, \ldots, n\}\). Therefore
\[
m_j^{fg^\Delta}\geq m_j^f \frac{\Delta g_j}{\Delta t_j},\quad j\in \{1, \ldots, n\},
\]
and
\[
L(P, fg^\Delta, E)\geq L(P, f, g).
\]
Taking supremum of both sides of the last inequality over \(P\in \mathcal{P}(I)\), we get
\[
\int\limits_a^b f(t)g^\Delta(t)\Delta t\geq \int\limits_a^b f(t)\Delta g(t).
\]
By the last inequality and the inequality \eqref{43.1}, we obtain the equation \eqref{47}.
2. Let \(fg^\Delta \in \mathcal{R}(E, I)\). We will use the notations in the previous point. Fix \(\epsilon>0\) arbitrarily. Then, there exists a partition \(P=\{t_0, t_1, \ldots, t_n\}\) of the interval \(I\) so that
\[\begin{equation}
\label{48} U(P, fg^\Delta, E)-L(P, fg^\Delta, E)<\frac{\epsilon}{2}.
\end{equation}\]
Note that
\[\begin{eqnarray*}
M_j^{fg^\Delta}&\geq& f(\xi_j)g^\Delta (\xi_j)\\ \\
&\geq& f(\xi_j)\frac{\Delta g_j}{\Delta t_j},\quad j\in \{1, \ldots, n\},
\end{eqnarray*}\]
whereupon \(M_j^{fg^\Delta}\) is an upper bound of \(f(t)\frac{\Delta g_j}{\Delta t_j}\), \(t\in I_j\), \(j\in \{1, \ldots, n\}\). On the other hand, we have
\[
\sup\limits_{t\in I_j}\left(f(t)\frac{\Delta g_j}{\Delta t_j}\right)=\frac{M_j^f \Delta g_j}{\Delta t_j},\quad j\in \{1, \ldots, n\}.
\]
Consequently
\[
M_j^{fg^\Delta}\geq \frac{M_j^f \Delta g_j}{\Delta t_j},\quad j\in \{1, \ldots, n\},
\]
and
\[\begin{equation}
\label{49}
M_j^f \Delta g_j\leq M_j^{fg^\Delta}\Delta t_j,\quad j\in \{1, \ldots, n\}.
\end{equation}\]
Next, we have
\[\begin{eqnarray*}
m_j^{fg^\Delta}&\leq& f(\tau_j)g^\Delta(\tau_j)\\ \\
&\leq& \frac{f(\tau_j)\Delta g_j}{\Delta t_j},\quad j\in \{1, \ldots, n\}.
\end{eqnarray*}\]
So, \(m_j^{fg^\Delta}\) is a lower bound of \(\frac{f(t)\Delta g_j}{\Delta t_j}\), \(t\in I_j\), \(j\in \{1, \ldots, n\}\). On the other hand,
\[
\inf\limits_{t\in I_j}\frac{f(t)\Delta g_j}{\Delta t_j}=\frac{m_j^f\Delta g_j}{\Delta t_j},\quad j\in \{1, \ldots, n\}.
\]
Therefore
\[
m_j^{fg^\Delta}\leq \frac{m_j^f \Delta g_j}{\Delta t_j},\quad j\in \{1, \ldots, n\},
\]
and
\[\begin{equation}
\label{50}
m_j^{fg^\Delta}\Delta t_j\leq m_j^f \Delta g_j,\quad j\in \{1, \ldots, n\}.
\end{equation}\]
Now, applying \eqref{48}, \eqref{49} and \eqref{50}, we find
\[\begin{eqnarray*}
U(P, f, g)-L(P, f, g)&=& \sum\limits_{j=1}^n M_j^f \Delta g_j-\sum\limits_{j=1}^n m_j^f \Delta g_j\\ \\
&\leq& \sum\limits_{j=1}^n M_j^{fg^\Delta}\Delta t_j-\sum\limits_{j=1}^n m_j^{fg^\Delta}\Delta t_j\\ \\
&=& U(P, fg^\Delta, E)-L(P, fg^\Delta, E)\\ \\
&<& \epsilon,
\end{eqnarray*}\]
which is the \(\epsilon\)-criterion. Therefore \(f\in \mathcal{R}(g, I)\). By \eqref{49}, we get
\[
U(P, f, g)\leq U(P, fg^\Delta, E).
\]
We take infimum of both sides of the last inequality over \(P\in \mathcal{P}(I)\) and we find
\[\begin{equation}
\label{52} \int\limits_a^b f(t)\Delta g(t)\leq \int\limits_a^b f(t)g^\Delta(t)\Delta t.
\end{equation}\]
By \eqref{50}, we find
\[
L(P, f, g)\geq L(P, fg^\Delta, E).
\]
We take supremum of both sides of the last inequality over \(P\in \mathcal{P}(I)\) and we obtain
\[
\int\limits_a^b f(t)\Delta g(t)\geq \int\limits_a^g f(t)g^\Delta(t)\Delta t.
\]
By the last inequality and the inequality \eqref{52}, we get \eqref{47}. This completes the proof.
Let \(\mathbb{T}=2^{\mathbb{N}_0}\). We will evaluate the integral
\[
I=\int\limits_1^8 (t^2-t)\Delta t^2.
\]
Here
\[\begin{eqnarray*}
\sigma(t)&=& 2t,\\ \\
f(t)&=& t^2-t,\\ \\
g(t)&=& t^2,\quad t\in \mathbb{T},
\end{eqnarray*}\]
and \(a=1\), \(b=8\), \(I=[1, 8]\). We have
\[\begin{eqnarray*}
g^\Delta(t)&=& \sigma(t)+t\\ \\
&=& 2t+t\\ \\
&=& 3t\\ \\
&>& 0,\quad t\in \mathbb{T}.
\end{eqnarray*}\]
Thus, \(g\) is a strictly increasing function on \(I\). Therefore, we can apply Theorem \(\PageIndex{22}\) and we get
\[\begin{eqnarray*}
I&=& \int\limits_1^8 (t^2-t)(3t)\Delta t\\ \\
&=& 3\int\limits_1^8 (t^3-t^2)\Delta t.
\end{eqnarray*}\]
Let
\[
h(t)=\frac{t^4}{15}-\frac{t^3}{7},\quad t\in I.
\]
Then
\[\begin{eqnarray*}
h^\Delta(t)&=& \frac{(\sigma(t))^3+t(\sigma(t))^2+t^2\sigma(t)+t^3}{15}-\frac{(\sigma(t))^2+t\sigma(t)+t^2}{7}\\ \\
&=& \frac{(2t)^3+t(2t)^2+t^2(2t)+t^3}{15}-\frac{(2t)^2+t(2t)+t^2}{7}\\ \\
&=& \frac{8t^3+4t^3+2t^3+t^3}{15}-\frac{4t^2+2t^2+t^2}{7}\\ \\
&=& t^3-t^2,\quad t\in I.
\end{eqnarray*}\]
Therefore
\[\begin{eqnarray*}
I&=& 3\int\limits_1^8 h^\Delta(t)\Delta t\\ \\
&=& 3h(t)\bigg|_{t=1}^{t=8}\\ \\
&=& 3\left(\frac{8^4}{15}-\frac{8^3}{7}-\frac{1}{15}+\frac{1}{7}\right)\\ \\
&=& 3\left(\frac{4096}{15}-\frac{1}{15}-\frac{512}{7}+\frac{1}{7}\right)\\ \\
&=& 3\left(\frac{4095}{15}-\frac{511}{7}\right)\\ \\
&=& 3(273-73)\\ \\
&=& 3\cdot 200\\ \\
&=& 600.
\end{eqnarray*}\]
Let \(g\) be a strictly increasing function on \(I\) such that \(g^\Delta\) exists and is continuous on \(I\). Let also, \(f\) be a strictly increasing bounded function on \(I\) such that \(f^\Delta\) exists on \(I\) and is continuous on \(I\). Then
\[\begin{equation}
\label{58} \int\limits_a^b f(t)\Delta g(t)=f(t)g(t)\bigg|_{t=a}^{t=b}-\int\limits_a^b g^\sigma(t) \Delta f(t).
\end{equation}\]
Proof
Since \(f^\Delta\) exists and is continuous on \(I\), we have that \(f\) is Riemann delta integrable on \(I\). Because \(g^\Delta\) is continuous on \(I\), it is Riemann delta integrable on \(I\). From here, we get that \(fg^\Delta\) is Riemann delta integrable on \(I\), i.e., \(fg^\Delta\in \mathcal{R}(E, I)\). Now, applying Theorem \(\PageIndex{22}\), we find that \(f\) is Riemann-Stieltjes delta integrable on \(I\) and
\[\begin{equation}
\label{56} \int\limits_a^b f(t)\Delta g(t)= \int\limits_a^b f(t)g^\Delta (t)\Delta t.
\end{equation}\]
Now, delta integration by parts gives
\[\begin{equation}
\label{57} \int\limits_a^b f(t)g^\Delta(t)\Delta t=f(t)g(t)\bigg|_{t=a}^{t=b}-\int\limits_a^b g^\sigma(t) f^\Delta(t)\Delta t.
\end{equation}\]
Since \(g^\sigma f^\Delta\in \mathcal{R}(E, I)\) and \(f\) is a strictly increasing function on \(I\), applying Theorem \(\PageIndex{22}\), we get \(g^\sigma\in \mathcal{R}(f, I)\) and
\[
\int\limits_a^b g^\sigma(t) f^\Delta(t)\Delta t=\int\limits_a^b g^\sigma(t)\Delta f(t).
\]
By the last relation and the relations \eqref{56}, \eqref{57}, we arrive at \eqref{58}. This completes the proof.
For the next result we have a need of the following auxiliary result.
Let \(f\in \mathcal{C}(I)\), \(g\) be a strictly increasing function on \(I\) and \(f\in \mathcal{R}(g, I)\). Then, we have the following estimate
\[
\left|\int\limits_a^b f(t)\Delta g(t)\right|\leq \max\limits_{t\in I} |f(t)|(g(b)-g(a)).
\]
Proof
Since \(f\in \mathcal{C}(I)\) and \(I\) is a compact set, there exists \(\max\limits_{t\in I}|f(t)\). Applying the "triangle inequality" for Riemann-Stieltjes delta integrals, Theorem \(\PageIndex{20}\), we obtain
\[\begin{equation}
\label{60} \left|\int\limits_a^b f(t)\Delta g(t)\right|\leq \int\limits_a^b |f(t)|\Delta g(t).
\end{equation}\]
Now, we find
\[\begin{equation}
\label{61} \int\limits_a^b |f(t)|\Delta g(t)\leq \max\limits_{t\in I} |f(t)|\int\limits_a^b 1 \Delta g(t).
\end{equation}\]
Next, we find
\[
\int\limits_a^b 1\Delta g(t)=g(b)-g(a).
\]
By the last equation and the equations \eqref{60}, \eqref{61}, we arrive at
\[\begin{eqnarray*}
\left|\int\limits_a^b f(t)\Delta g(t)\right|&\leq& \int\limits_a^b |f(t)|\Delta g(t)\\ \\
&\leq& \max\limits_{t\in I} |f(t)|\int\limits_a^b 1 \Delta g(t)\\ \\
&=& \max\limits_{t\in [a, b]}|f(t)| (g(b)-g(a)).
\end{eqnarray*}\]
This completes the proof.
Let \(\{f_n\}_{n\in \mathbb{N}}\) be a sequence of continuous functions on \(I\) that converges uniformly to the continuous function \(f\) on \(I\). Let also, \(g\) be a strictly increasing function on \(I\) and \(f_n, f\in \mathcal{R}(g, I)\), \(n\in \mathbb{N}\). Then
\[
\lim\limits_{n\to \infty} \int\limits_a^b f_n(t)\Delta g(t)=\int\limits_a^b f(t)\Delta g(t).
\]
Proof
Applying Theorem \(\PageIndex{24}\), we get
\[\begin{eqnarray*}
\left|\int\limits_a^b f_n(t)\Delta g(t)-\int\limits_a^b f(t)\Delta g(t)\right|&=& \left|\int\limits_a^b (f_n(t)-f(t))\Delta g(t)\right|\\ \\
&\leq& \max\limits_{t\in [a, b]}|f_n(t)-f(t)|(g(b)-g(a))\\ \\
&\to& 0,\quad \mbox{as}\quad n\to \infty.
\end{eqnarray*}\]
This completes the proof.