Chapter 3: Convergence of the Laplace Transform
- Page ID
- 208476
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Let \(f\in \mathcal{C}_{rd}([s, \infty)) \) be of exponential order \(\alpha \). Then the Laplace transform \(\mathcal{L}(f)(\cdot, s) \) exists on \(\mathbb{C}_{\mu_*(s)}(\alpha) \) and converges absolutely.
Proof
Since \(f\in \mathcal{C}_{rd}([s, \infty)) \) is of exponential order \(\alpha \) on \([s, \infty) \), there exists a constant \(K>0 \) such that
\[
|f(t)| \leq K e_{\alpha}(t, s),\quad t\in [s, \infty).
\notag\]
Note that
\[
\text{Re}_{\mu(t)} (z)\geq \text{Re}_{\mu_*(s)}(z),\quad t\in [s, \infty).
\notag\]
Thus,
\[\begin{aligned}
|1+\mu(t) z| =& 1+\mu(t) \text{Re}_{\mu(t)}(z) \\
\geq& 1+\mu(t) \text{Re}_{\mu_*(s)}(z),\quad t\in [s, \infty),.
\end{aligned}\notag\]
Hence, we obtain
\[\begin{aligned}
\left|\int_s^t f(\tau) e_{\ominus z}(\sigma(\tau), s)\Delta \tau\right|\leq& \int_s^t |f(\tau) e_{\ominus z}(\sigma(\tau), s)|\Delta\tau \\
\leq& K \int_s^t |e_{\alpha}(\tau, s)e_{\ominus z}(\sigma(\tau), s)|\Delta \tau \\
=& K\int_s^t \frac{1}{|1+\mu(\tau) z|}|e_{\alpha\ominus z}(\tau, s)| \Delta \tau \\
\leq& K\int_s^t \frac{e_{\alpha\ominus \text{Re}_{\mu_*(s)}(z)}(\tau, s)}{1+\mu(\tau)\text{Re}_{\mu_*(s)}(z)}\Delta \tau \\
=& \frac{K}{\alpha- \text{Re}_{\mu_*(s)}(z)}\int_s^t \frac{\alpha-\text{Re}_{\mu_*(s)}(z)}{1+\mu(\tau)\text{Re}_{\mu_*(s)}(z)}e_{\alpha\ominus \text{Re}_{\mu_*(s)}(z)}(\tau, s)\Delta \tau \\
=& \frac{K}{\alpha-\text{Re}_{\mu_*(s)}(z)}\int_s^t (\alpha\ominus \text{Re}_{\mu_*(s)}(z))e_{\alpha\ominus \text{Re}_{\mu_*(s)}(z)}(\tau, s)\Delta \tau \\
=& \frac{K}{\text{Re}_{\mu_*(s)}(z)-\alpha}\left(1-e_{\alpha\ominus \text{Re}_{\mu_*(s)}(z)}(t, s)\right) \\
\to& \frac{K}{\text{Re}_{\mu_*(s)}(z)-\alpha},\quad \text{as}\quad t\to\infty,\quad z\in \mathbb{C}_{\mu_*(s)}(\alpha).
\end{aligned}\notag\]
Thus,
\begin{equation}
\label{50.1}
\begin{array}{lll}
\left|\int_s^{\infty}f(\tau) e_{\ominus z}(\sigma(\tau), s) \Delta\tau\right|\leq& \int_s^{\infty} |f(\tau)e_{\ominus z}(\sigma(\tau), s)|\Delta \tau \\
\leq& \frac{K}{\text{Re}_{\mu_*(s)}(z)-\alpha},\quad z\in \mathbb{C}_{\mu_*(s)}(\alpha).
\end{array}
\end{equation}
Consequently the Laplace transform of the function \(f \) converges absolutely on \(\mathbb{C}_{\mu_*(s)}(z) \). This completes the proof.
By the last theorem, we get the following corollary.
Let \(f\in \mathcal{C}_{rd}([s, \infty)) \) be of some exponential order. Then, by \eqref{50.1}, we have that
\[
\lim_{\text{Re}(z)\to \infty}\mathcal{L}(f)(z, s)=0.
\notag\]
Therefore
\[
\lim_{|z|\to\infty}\mathcal{L}(f)(z, s)=0
\notag\]
in the case when \(\mu_*(s)>0 \).
Let \(f \in \mathcal{C}_{rd}([s, \infty)) \) be of exponential order \(\alpha \). Then, the Laplace transform \(\mathcal{L}(f) \) converges uniformly in the half plane \(\mathbb{C}_{\mu_*(s)}(\beta) \), where \(\beta>\alpha \).
Proof
Since \(f \) is of exponential order \(\alpha \) on \([s, \infty) \), there exists a constant \(K>0 \) such that
\[
|f(t)| \leq K e_{\alpha}(t, s),\quad t\in [s, \infty).
\notag\]
For \(t\geq s \), we have
\[
\int_t^{\infty} |f(\tau) e_{\ominus z}(\sigma(\tau), s)|\Delta \tau\leq \frac{K}{\text{Re}_{\mu_*(s)}(z)-\alpha}e_{\alpha\ominus \text{Re}_{\mu_*(s)}(z)}(t, s).
\notag\]
Thus,
\begin{equation}
\label{50.2}
\int_t^{\infty} |f(\tau) e_{\ominus z}(\sigma(\tau), s)|\Delta \tau\leq \frac{K}{\beta-\alpha}e_{\alpha\ominus \text{Re}_{\mu_*(s)}(z)}(t, s),\quad t\in [s, \infty).
\end{equation}
Because
\[
1+\mu(\tau)\text{Re}_{\mu_*(s)}(z)\geq 1+\mu(\tau)\alpha,\quad \tau\in [s, t),
\notag\]
we have
\[
m_{\text{Re}_{\mu_*(s)}(z)}(t, s)\leq m_{\alpha}(t, s),\quad z\in \mathbb{C}_{\mu_*(s)}(\alpha),\quad t\in [s, \infty).
\notag\]
Hence, we arrive at
\[\begin{aligned}
e_{\alpha\ominus \text{Re}_{\mu_*(s)}(z)}(t, s)\leq& e^{\int_s^t\left(\alpha\ominus \text{Re}_{\mu_*(s)}(z)\right)(\tau)\Delta\tau} \\
=& e^{-\left(\text{Re}_{\mu_*(s)}(z)-\alpha\right)\int_s^t\frac{\Delta\tau}{1+\mu(\tau)\text{Re}_{\mu_*(s)}(z)}} \\
=& e^{-\left(\text{Re}_{\mu_*(s)}(z)-\alpha\right)m_{\text{Re}_{\mu_*(s)}(z)}(t, s)} \\
\to& 0,\quad \text{as}\quad t\to\infty.
\end{aligned}\notag\]
Therefore, for any \(\epsilon>0 \), there exists an \(r\in [s, \infty) \) such that
\[
\left|\int_t^{\infty} f(\tau) e_{\ominus z}(\sigma(\tau), s)\Delta\tau\right|\leq \epsilon,\quad t\in [r, \infty),\quad z\in \mathbb{C}_{\mu_*(s)}(\beta).
\notag\]
This completes the proof.


