Skip to main content
Mathematics LibreTexts

3.9E: Exercises for Section 3.9

  • Page ID
    149890
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    For exercises 1 - 5, examine the graphs. Identify where the vertical asymptotes are located.

    1)

    The function graphed decreases very rapidly as it approaches x = 1 from the left, and on the other side of x = 1, it seems to start near infinity and then decrease rapidly.

    Answer
    \(x=1\)

    2)

    The function graphed increases very rapidly as it approaches x = −3 from the left, and on the other side of x = −3, it seems to start near negative infinity and then increase rapidly to form a sort of U shape that is pointing down, with the other side of the U being at x = 2. On the other side of x = 2, the graph seems to start near infinity and then decrease rapidly.

    3)

    The function graphed decreases very rapidly as it approaches x = −1 from the left, and on the other side of x = −1, it seems to start near negative infinity and then increase rapidly to form a sort of U shape that is pointing down, with the other side of the U being at x = 2. On the other side of x = 2, the graph seems to start near infinity and then decrease rapidly.

    Answer
    \(x=−1,\;x=2\)

    4)

    The function graphed decreases very rapidly as it approaches x = 0 from the left, and on the other side of x = 0, it seems to start near infinity and then decrease rapidly to form a sort of U shape that is pointing up, with the other side of the U being at x = 1. On the other side of x = 1, there is another U shape pointing down, with its other side being at x = 2. On the other side of x = 2, the graph seems to start near negative infinity and then increase rapidly.

    5)

    The function graphed decreases very rapidly as it approaches x = 0 from the left, and on the other side of x = 0, it seems to start near infinity and then decrease rapidly to form a sort of U shape that is pointing up, with the other side being a normal function that appears as if it will take the entirety of the values of the x-axis.

    Answer
    \(x=0\)

    For the functions \(f(x)\) in exercises 6 - 10, determine whether there is an asymptote at \(x=a\). Justify your answer without graphing on a calculator.

    6) \(f(x)=\dfrac{x+1}{x^2+5x+4},\quad a=−1\)

    7) \(f(x)=\dfrac{x}{x−2},\quad a=2\)

    Answer
    Yes, there is a vertical asymptote at \(x = 2\).

    8) \(f(x)=(x+2)^{3/2},\quad a=−2\)

    9) \(f(x)=(x−1)^{−1/3},\quad a=1\)

    Answer
    Yes, there is vertical asymptote at \(x = 1\).

    10) \(f(x)=1+x^{−2/5},\quad a=1\)

    In exercises 11 - 20, evaluate the limit.

    11) \(\displaystyle \lim_{x→∞}\frac{1}{3x+6}\)

    Answer
    \(\displaystyle \lim_{x→∞}\frac{1}{3x+6} = 0\)

    12) \(\displaystyle \lim_{x→∞}\frac{2x−5}{4x}\)

    13) \(\displaystyle \lim_{x→∞}\frac{x^2−2x+5}{x+2}\)

    Answer
    \(\displaystyle \lim_{x→∞}\frac{x^2−2x+5}{x+2} = ∞\)

    14) \(\displaystyle \lim_{x→−∞}\frac{3x^3−2x}{x^2+2x+8}\)

    15) \(\displaystyle \lim_{x→−∞}\frac{x^4−4x^3+1}{2−2x^2−7x^4}\)

    Answer
    \(\displaystyle \lim_{x→−∞}\frac{x^4−4x^3+1}{2−2x^2−7x^4} = −\frac{1}{7}\)

    16) \(\displaystyle \lim_{x→∞}\frac{3x}{\sqrt{x^2+1}}\)

    17) \(\displaystyle \lim_{x→−∞}\frac{\sqrt{4x^2−1}}{x+2}\)

    Answer
    \(\displaystyle \lim_{x→−∞}\frac{\sqrt{4x^2−1}}{x+2} = -2\)

    18) \(\displaystyle \lim_{x→∞}\frac{4x}{\sqrt{x^2−1}}\)

    19) \(\displaystyle \lim_{x→−∞}\frac{4x}{\sqrt{x^2−1}}\)

    Answer
    \(\displaystyle \lim_{x→−∞}\frac{4x}{\sqrt{x^2−1}} = -4\)

    20) \(\displaystyle \lim_{x→∞}\frac{2\sqrt{x}}{x−\sqrt{x}+1}\)

    For exercises 21 - 29, find the horizontal and vertical asymptotes.

    21) \(f(x)=x−\dfrac{9}{x}\)

    Answer
    Horizontal: none,
    Vertical: \(x=0\)

    22) \(f(x)=\dfrac{1}{1−x^2}\)

    23) \(f(x)=\dfrac{x^3}{4−x^2}\)

    Answer
    Horizontal: none,
    Vertical: \(x=±2\)

    24) \(f(x)=\dfrac{x^2+3}{x^2+1}\)

    25) \(f(x)=\dfrac{3x^2-3x}{x^2+x-12}\)

    Answer
    Horizontal: \(y=3\)
    Vertical: \(x=-4,x=3\)

    26) \(f(x)=\dfrac{1}{x^3+x^2}\)

    Answer
    Horizontal: \(y=0,\)
    Vertical: \(x=0\) and \(x=−1\)

    27) \(f(x)=\dfrac{1}{x−1}−2x\)

    28) \(f(x)=\dfrac{x^3+1}{x^3−1}\)

    Answer
    Horizontal: \(y=1,\)
    Vertical: \(x=1\)

    29) \(f(x)=\dfrac{1}{x}−\sqrt{x}\)

    For exercises 30-33, construct a function \(f(x)\) that has the given asymptotes.

    30) \(x=1\) and \(y=2\)

    Answer
    Answers will vary, for example: \(y=\dfrac{2x}{x−1}\)

    31) \(x=1\) and \(y=0\)

    32) \(y=4, \;x=−1\)

    Answer
    Answers will vary, for example: \(y=\dfrac{4x}{x+1}\)

    33) \(x=0\)

    In exercises 34-38 graph the function on a graphing calculator on the window \(x=[−5,5]\) and estimate the horizontal asymptote or limit. Then, calculate the actual horizontal asymptote or limit.

    34) [T] \(f(x)=\dfrac{1}{x+10}\)

    Answer
    \(\displaystyle \lim_{x→∞}\frac{1}{x+10}=0\) so \(f\) has a horizontal asymptote of \(y=0\).

    35) [T] \(f(x)=\dfrac{x+1}{x^2+7x+6}\)

    36) [T] \(\displaystyle \lim_{x→−∞}x^2+10x+25\)

    Answer
    \(\displaystyle \lim_{x→−∞}x^2+10x+25 = ∞\)

    37) [T] \(\displaystyle \lim_{x→−∞}\frac{x+2}{x^2+7x+6}\)

    38) [T] \(\displaystyle \lim_{x→∞}\frac{3x+2}{x+5}\)

    Answer
    \(\displaystyle \lim_{x→∞}\frac{3x+2}{x+5}=3\) so this function has a horizontal asymptote of \(y=3\).

    In exercises 39-47, draw a graph of the functions without using a calculator. Be sure to notice all important features of the graph: local maxima and minima, inflection points, and asymptotic behavior.

    39) \(y=3x^2+2x+4\)

    40) \(y=x^3−3x^2+4\)

    Answer
    The function starts in the third quadrant, increases to pass through (−1, 0), increases to a maximum and y intercept at 4, decreases to touch (2, 0), and then increases to (4, 20).

    41) \(y=\dfrac{2x+1}{x^2+6x+5}\)

    42) \(y=\dfrac{2x+2}{x-1}\)

    Answer
    The function graphed decreases very rapidly as it approaches x = 1 from the left, and on the other side of x = 1, it seems to start near infinity and then decrease rapidly.

    43) \(y=\dfrac{x^3+4x^2+3x}{3x+9}\)

    Answer
    An upward-facing parabola with minimum between x = 0 and x = −1 with y intercept between 0 and 1.

    44) \(y=\dfrac{x^2+x−2}{x^2−3x−4}\)

    45) \(y=\sqrt{x^2−5x+4}\)

    Answer
    This graph starts at (−2, 4) and decreases in a convex way to (1, 0). Then the graph starts again at (4, 0) and increases in a convex way to (6, 3).

    46) \(y=e^x−x^3\)

    47) \(y=x\ln(x), \quad x>0\)

    48) For \(f(x)=\dfrac{P(x)}{Q(x)}\) to have an asymptote at \(y=2\) then the polynomials \(P(x)\) and \(Q(x)\) must have what relation?

    49) For \(f(x)=\dfrac{P(x)}{Q(x)}\) to have an asymptote at \(x=0\), then the polynomials \(P(x)\) and \(Q(x).\) must have what relation?

    Answer
    \(Q(x).\) must have have \(x^{k+1}\) as a factor, where \(P(x)\) has \(x^k\) as a factor.

    50) If \(f′(x)\) has asymptotes at \(y=3\) and \(x=1\), then \(f(x)\) has what asymptotes?

    51) Both \(f(x)=\dfrac{1}{x−1}\) and \(g(x)=\dfrac{1}{(x−1)^2}\) have asymptotes at \(x=1\) and \(y=0.\) What is the most obvious difference between these two functions?

    Answer
    \(\displaystyle \lim_{x→1^−}f(x)=-\infty \text{ and } \lim_{x→1^−}g(x)=\infty\)

    52) True or false: Every ratio of polynomials has vertical asymptotes.


    3.9E: Exercises for Section 3.9 is shared under a CC BY-NC-SA 1.0 license and was authored, remixed, and/or curated by LibreTexts.