Skip to main content
Mathematics LibreTexts

4.6E: Exercises for Section 4.6

  • Page ID
    149906
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1) Why is \(u\)-substitution referred to as a change of variable?

    2) If \( f=g∘h\), when reversing the chain rule, \(\dfrac{d}{dx}(g∘h)(x)=g′(h(x))h′(x)\), should you take \( u=g(x)\) or \(u=h(x)?\)

    Answer
    \(u=h(x)\)

    In exercises 3 - 7, verify each identity using differentiation. Then, using the indicated \(u\)-substitution, identify \(f\) such that the integral takes the form \(\displaystyle∫f(u)\,du.\)

    3) \(\displaystyle ∫\frac{1}{\sqrt{2x+1}}\,dx=\sqrt{2x+1}+C;\quad u=2x+1\)

    4) \(\displaystyle∫xe^{x^2-3}\,dx=\frac{1}{2}e^{x^2-3}+C,\quad u=x^2-3\)

    Answer
    \(du=2x\,dx;\quad f(u)=\frac{1}{2}e^u\)

    5) \(\displaystyle∫x\sqrt{4x^2+9}\,dx=\frac{1}{12}(4x^2+9)^{3/2}+C;\quad u=4x^2+9\)

    6) \(\displaystyle∫\frac{x}{\sqrt{4x^2+9}}\,dx=\frac{1}{4}\sqrt{4x^2+9}+C;\quad u=4x^2+9\)

    Answer
    \( du=8x\,dx;\quad f(u)=\frac{1}{8\sqrt{u}}\)

    7) \(\displaystyle∫\frac{x}{(4x^2+9)^2}\,dx=−\frac{1}{8(4x^2+9)} + C;\quad u=4x^2+9\)

    In exercises 8 - 15, find the antiderivative using the indicated substitution.

    8) \(\displaystyle∫3\left(3x+4\right)^4\,dx;\quad u=3x+4\)

    Answer
    \(\displaystyle∫3\left(3x+4\right)^4\,dx = \frac{1}{5}\left(3x+4\right)^5+C\)

    9) \(\displaystyle∫e^{7x+1}\,dx;\quad u=7x+1\)

    10) \(\displaystyle∫(2x−3)^{−7}\,dx;\quad u=2x−3\)

    Answer
    \(\displaystyle∫(2x−3)^{−7}\,dx = −\frac{1}{12(2x−3)^6}+C\)

    11) \(\displaystyle∫(3x−2)^{−1}\,dx;\quad u=3x−2\)

    12) \(\displaystyle∫\frac{x}{\sqrt{x^2+1}}\,dx;\quad u=x^2+1\)

    Answer
    \(\displaystyle∫\frac{x}{\sqrt{x^2+1}}\,dx = \sqrt{x^2+1}+C\)

    13) \(\displaystyle∫x\sqrt{1−x^2}\,dx;\quad u=1−x^2\)

    14) \(\displaystyle∫(x−1)(x^2−2x)^3\,dx;\quad u=x^2−2x\)

    Answer
    \(\displaystyle∫(x−1)(x^2−2x)^3\,dx = \frac{1}{8}(x^2−2x)^4+C\)

    15) \(\displaystyle∫(x^2−2x)(x^3−3x^2)^2\,dx;\quad u=x^3=3x^2\)

    In exercises 16-20, use a suitable change of variables to determine the indefinite integral.

    16) \(\displaystyle∫\frac{1}{1-2x}\,dx\)

    Answer
    \(\displaystyle∫\frac{1}{1-2x}\,dx= -\frac{1}{2}\ln{|1-2x|}+C \)

    17) \(\displaystyle∫t(1−t^2)^{10}dt\)

    18) \(\displaystyle∫(11x−7)^{−3}\,dx\)

    Answer
    \(\displaystyle∫(11x−7)^{−3}\,dx = −\frac{1}{22(11x−7)^2}+C\)

    19) \(\displaystyle∫(7x−11)^4\,dx\)

    20) \(\displaystyle∫\frac{x^2}{(x^3−3)^2}\,dx\)

    Answer
    \(\displaystyle∫\frac{x^2}{(x^3−3)^2}\,dx = −\frac{1}{3(x^3−3)}+C\)

    In exercises 21-26, use a change of variables to evaluate the definite integral.

    21) \(\displaystyle∫^1_0x\sqrt{1−x^2}\,dx\)

    22) \(\displaystyle∫^1_0\frac{x}{\sqrt{1+x^2}}\,dx\)

    Answer
    \(\displaystyle u=1+x^2,\quad du=2x\,dx,\quad ∫^1_0\frac{x}{\sqrt{1+x^2}}\,dx = \frac{1}{2}∫^2_1u^{−1/2}du=\sqrt{2}−1\)

    23) \(\displaystyle∫^2_0\frac{t}{\sqrt{5+t^2}}\,dt\)

    24) \(\displaystyle∫^1_0\frac{t^2}{\sqrt{1+t^3}}\,dt\)

    Answer
    \(\displaystyle u=1+t^3,\quad du=3t^2,\quad ∫^1_0\frac{t^2}{\sqrt{1+t^3}}\,dt = \frac{1}{3}∫^2_1u^{−1/2}du=\frac{2}{3}(\sqrt{2}−1)\)

    25) \(\displaystyle∫^{0}_{-1}e^{-2x}\,dx\)

    26) \(\displaystyle∫^{2}_0\frac{2}{4x+1}\,dx\)

    Answer
    \(\displaystyle u=4x+1,\quad du=4dx,\quad \displaystyle∫^{2}_0\frac{2}{4x+1}\,dx =\frac{1}{2}∫^{9}_{1}\frac{1}{u}du = \frac{1}{2}\ln{9}\)

    27) If \(h(a)=h(b)\) in \(\displaystyle ∫^b_ag'(h(x))h(x)\,dx,\) what can you say about the value of the integral?

    28) Is the substitution \(u=1−x^2\) in the definite integral \(\displaystyle ∫^2_0\frac{x}{1−x^2}\,dx\) okay? If not, why not?

    Answer
    No, because the integrand is discontinuous at \(x=1\).

    In exercises 29-30, use a change of variables to show that each definite integral is equal to zero.

    29) \(\displaystyle ∫^1_0(1−2t)\,dt\)

    30) \(\displaystyle ∫^1_0\frac{1−2t}{1+(t−\frac{1}{2})^2}\,dt\)

    Answer
    \(u=1+(t−\frac{1}{2})^2;\) the integral becomes \(\displaystyle −∫^{5/4}_{5/4}\frac{1}{u}\,du\).

    31) Show that the average value of \(f(x)\) over an interval \([a,b]\) is the same as the average value of \(f(cx)\) over the interval \(\left[\frac{a}{c},\frac{b}{c}\right]\) for \(c>0.\)

    Answer
    Setting \(u=cx\) and \(du=c\,dx\) gets you \(\displaystyle \frac{1}{\frac{b}{c}−\frac{a}{c}}∫^{b/c}_{a/c}f(cx)\,dx=\frac{c}{b−a}∫^{u=b}_{u=a}f(u)\frac{du}{c}=\frac{1}{b−a}∫^b_af(u)\,du.\)

    32) Find the area under the graph of \(f(t)=\dfrac{t}{(1+t^2)^a}\) between \(t=0\) and \(t=x\) where \(a>0\) and \(a≠1\) is fixed, and evaluate the limit as \(x→∞\).

    33) Find the area under the graph of \(g(t)=\dfrac{t}{(1−t^2)^a}\) between \(t=0\) and \(t=x\), where \(0<x<1\) and \(a>0\) is fixed. Evaluate the limit as \(x→1\).

    Answer
    \(\displaystyle ∫^x_0g(t)\,dt=\frac{1}{2}∫^1_{u=1−x^2} \frac{du}{u^a}=\frac{1}{2(1−a)}u^{1−a}∣1u=\frac{1}{2(1−a)}(1−(1−x^2)^{1−a})\) As \(x→1\) the limit is \(\dfrac{1}{2(1−a)}\) if \(a<1\), and the limit diverges to \(+∞\) if \(a>1\).

    4.6E: Exercises for Section 4.6 is shared under a CC BY-NC-SA 1.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?