4.3
- Page ID
- 155427
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Solve \(y'''-4y''+y'+6y=8e^{4t} \)
Solution
The first step is going to be solve this as if it were homogenous. So we have \(r^3-4r^2+r+6=0.\) We are going to guess a solution of \(y=e^{rt}\) so we check if the equation is equal to zero for \(r = \pm 1, \pm 2, \pm 3, \pm 6\). We then see that we can factor \( r^3-4r^2+r+6 = (r+1)(r-2)(r-3)\), so our values of \(r\) are \(-1,2,\) and \(3\). Thus our homogenous generic solution is \(y= c_1e^{-t}+c_2e^{2t}+c_3e^{3t}\).
Our next step is to find a non homogenous solution. We are going to guess that the solution \(y = A e^{4 t}.\) Then from a previous section we have \( \psi=u_1\phi_1 +u_2\phi_2 + u_3\phi_3.\) Then we use the Wronskian and find
\[ \notag
w(e^{-t},e^{2t},e^{3t}) =
\left|\begin{array}{ccc}
e^{-t} & e^{2 t} & e^{3 t} \\
-e^{-t} & 2 e^{2 t} & 3 e^{3 t} \\
e^{-t} & 4 e^{2 t} & 9 e^{3t}
\end{array}\right| \xrightarrow[R_2+R_3]{R_3-R_1} \left|\begin{array}{ccc}
e^{-t} & e^{2 t} & e^{3 t} \\
0 & 3 e^{2 t} & 4 e^{3 t} \\
0 & 3 e^{2 t} & 8 e^{3 t}
\end{array}\right| \xrightarrow[R_3-R_2]{ }
\left|\begin{array}{ccc}
e^{-t} & e^{2 t} & e^{3 t} \\
0 & 3 e^{2 t} & 4 e^{3 t} \\
0 & 0 & 4 e^{3 t}
\end{array}\right| = 12e^{(-1+2+3)t}=12e^{4t}
\]
Alternatively, we could solved the above using Abel's Theorem. We have \(w(e^{-t},e^{2t},e^{3t}) = ce^{-\int p(t)dt} = ce^{-\int(-4)dt} = ce^{\int 4 dt} = ce^{4t}.\) We now evaluate at 0 and have
\[\notag
w(e^{0},e^{0},e^{0}) =
\left|\begin{array}{ccc}
e^{0} & e^{0} & e^{0} \\
-e^{0} & 2 e^{0} & 3 e^{0} \\
e^{0} & 4 e^{0} & 9 e^{0}
\end{array}\right|=
\left|\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 2 & 3 \\
1 & 4 & 9
\end{array}\right| \xrightarrow[C_2-C_1]{C_3-C_1}
\left|\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 3 & 4 \\
1 & 3 & 8
\end{array}\right| = 1(3 \cdot 8 - 3\cdot 4) = 12
\]
Thus we have \(c=12\). The last equality comes from computing the determinant using minors, see the linear algebra review if you want more infromation about this method.
Next we solve for \(w(1),w(2),\) and \(w(3)\). We have
\[\notag w(1) = \left|\begin{array}{ccc}
0 & e^{2 t} & e^{3 t} \\
0 & 2 e^{2 t} & 3 e^{3 t} \\
1 & 4 e^{2 t} & 9 e^{3 t}
\end{array}\right| = +1(3e^{5t}-2e^{5t})=e^{5t}\]
\[\notag w(2) = \left|\begin{array}{ccc}
e^{-t} & 0 & e^{3 t} \\
-e^{-t} & 0 & 3 e^{3 t} \\
e^{-t} & 1 & 9 e^{3 t}
\end{array}\right| =-1\left|\begin{array}{cc}
e^{-t} & e^{3 t} \\
-e^{-t} & 3 e^{3 t}
\end{array}\right|=-\left(3 e^{2 t}+e^{2 f}\right) = -4e^{2t}\]
\[\notag w(3) = \left|\begin{array}{ccc}
e^{-t} & e^{2 t}& 0 \\
-e^{-t} & 2 e^{2 t} & 0 \\
e^{-t} & 4 e^{2 t} & 1
\end{array}\right| =-1\left|\begin{array}{cc}
e^{-t} & e^{2 t} \\
-e^{-t} & 2 e^{2 t}
\end{array}\right|=-\left(2 e^{t}+e^{t}\right) = 3e^{t}\]
Then we also need to solve for \(u_1, u_2, u_3\), and \( \psi.\)
\[\notag
u_1=\int \frac{g}{a} \frac{w_1 d t}{w}=\int \frac{8 e^{4 t} \cdot e^{5 t}}{12 e^{4 t}} d t = \int\frac{2}{3}e^{5t} dt = \frac{2}{15}e^{5t}
\]
\[ \notag
u_2=\int \frac{2}{a} \frac{w_2}{w} d t=\int \frac{8 e^{4 t} \cdot\left(-4 e^{2 t}\right)}{12 e^{4 t}} d t = -\int \frac{8}{3} e^{2 t} d t=-\frac{4}{3} e^{2 t}
\]
\[ \notag
u_3=\int \frac{g}{a} \frac{\omega_3}{\omega} d t=\int \frac{8 e^{4 t}\left(3 e^t\right)}{12 e^{4 t}} d t =\int 2 e^t d t=2 e^t
\]
\[ \notag
\psi=\left(\frac{2}{15} e^{5 t}\right) e^{-t}+\left(-\frac{4}{5} e^{2 t}\right) e^{2 t}+\left(2 e^t\right) e^{3 t} =\left(\frac{2}{15}-\frac{4}{3}+2\right) e^{4 t}=\frac{2-20+30}{15} e^{4 t} =\frac{12}{15} e^{4 t} =\frac{4}{5} e^{4 t}
\]
Thus we have a general solution of \(y=c_1 e^{-t}+c_2 e^{2 t}+c_3 e^{3 t} +\frac{4}{5} e^{4 t}.\)


