6.3: test
- Page ID
- 154469
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Step function
Graph \(u_c(t)= \begin{cases}0 & t<c \\ 1 & t \geq c\end{cases}\).
- Answer
-
Below is the answer when \(c=5\).
Graph \(g(t) =\sin(t)\).
- Answer
-
Add texts here. Do not delete this text first.
Graph \(h(t)=u_\pi(t) \sin (t) \)
- Answer
-
Graph \(f(t)=2 t+u_\pi(t)[\sin (t)-2 t]= \begin{cases} t<\pi \\ t \geq \pi\end{cases}\)
- Answer
-
Add texts here. Do not delete this text first.
If \(h(t)= \begin{cases}t & 0 \leq t<4 \\ \ln (t) & t \geq 4\end{cases}\), then what does this imply about \(h(t)\)
- Answer
-
Add texts here. Do not delete this text first.
Example: \(f(t)= \begin{cases}f_1, & \text { if } t<4 \\ f_2, & \text { if } 4 \leq t<5 \\ f_3, & \text { if } 5 \leq t<10 \\ f_4, & \text { if } t \geq 10\end{cases}\)
Solution
Hence
\[ \notag f(t)=f_1(t)+u_4(t)\left[f_2(t)\right.\left.-f_1(t)\right]+u_5(t)\left[f_3(t)-f_2(t)\right] +u_{10}(t)\left[f_4(t)-f_3(t)\right]\]
Partial check
If \(t=3: \quad f(3) =f_1(3)+0\left[f_2(3)-f_1(3)\right] +0\left[f_3(3)-f_2(3)\right]+0\left[f_4(3)-f_3(3)\right]=f_1(3)\)
If \(t=9: f(9)=f_1(9)+1\left[f_2(9)-f_1(9)\right] +1\left[f_3(9)-f_2(9)\right]+0\left[f_4(9)-f_3(9)\right]=f_3(9) \)
\(f(t)=\left\{\begin{array}{ll}0 & 0 \leq t<2 \\ t^2 & t \geq 2\end{array} \quad\right.\) implies \(\quad f(t)=\)
Solution
\(f(t) = u_2(t)*t^2\)
\(g(t)=\left\{\begin{array}{ll}t^2 & 0 \leq t<3 \\ 0 & t \geq 3\end{array} \quad\right.\) implies \(g(t)=\)
Solution
\(g(t) = t^2 - u_3(t)*t^2\)
\(j(t)=\left\{\begin{array}{ll}t & 0 \leq t<5 \\ 2 & 5 \leq t < 8 \\ e^t & t \geq 8\end{array} \quad\right.\) implies \(j(t)=\).
Solution
\(j(t) = t -u_5(t) *t +2*u_5(t) -2*u_8(t) + e^t * u_8(t)\)
\[ \notag \mathcal{L}\left(u_c(t) f(t-c)\right)=e^{-c s} \mathcal{L}(f(t))\]
or equivalently
\[\notag
\mathcal{L}\left(u_c(t) f(t)\right)=e^{-c s} \mathcal{L}(f(t+c)) .
\]
the above theorem can be restated as, replacing \(t-c\) with \(t\) is equivalent to replacing \(t\) with \(t+c\).
Find the LaPlace transform of \(\mathcal{L}\left(u_3(t)\left(t^2-2 t+1\right)\right)\)
Solution
\[\begin{aligned}
& \mathcal{L}\left(u_3(t)\left(t^2-2 t+1\right)\right)=e^{-3 s}\left(\frac{2}{s^3}+\frac{4}{s^2}+\frac{4}{s}\right) \\
& \left.\mathcal{L}\left(u_3(t)\left(t^2-2 t+1\right)\right)=e^{-3 s} \mathcal{L}\left((t+3)^2-2(t+3)+1\right)\right) \\
& \left.=e^{-3 s} \mathcal{L}\left(t^2+6 t+9-2 t-6+1\right)\right) \\
& =e^{-3 s} \mathcal{L}\left(t^2+4 t+4\right)=e^{-3 s}\left(\frac{2}{s^3}+\frac{4}{s^2}+\frac{4}{s}\right) \\
&
\end{aligned}\]
Find the LaPlace transform of \(\mathcal{L}\left(u_4(t)\left(e^{-8 t}\right)\right)\)
Solution
\[\notag \begin{aligned}
& \mathcal{L}\left(u_4(t)\left(e^{-8 t}\right)\right)=e^{-4 s-32}\left(\frac{1}{s+8}\right) \\
& \left.\mathcal{L}\left(u_4(t)\left(e^{-8 t}\right)\right)=e^{-4 s} \mathcal{L}\left(e^{-8(t+4)}\right)=e^{-4 s} \mathcal{L}\left(e^{-8 t} e^{-32}\right)\right) \\
& =e^{-4 s} e^{-32} \mathcal{L}\left(e^{-8 t}\right)=e^{-4 s-32}\left(\frac{1}{s+8}\right)
\end{aligned}\]
Find the LaPlace transform of \(\mathcal{L}\left(u_2(t)\left(t^2 e^{3 t}\right)\right) \)
Solution
\[ \notag
\begin{aligned}
\mathcal{L}\left(u_2(t)\left(t^2 e^{3 t}\right)\right) & =e^{-2 s+6}\left(\frac{2}{(s-3)^3}+\frac{4}{(s-3)^2}+\frac{4}{(s-3)}\right)\\
\mathcal{L}\left(u_2\left(t^2 e^{3 t}\right)\right) & \left.=e^{-2 s} \mathcal{L}\left(\left[(t+2)^2\right] e^{3(t+2)}\right)\right) \\
& \left.=e^{-2 s} \mathcal{L}\left(\left[t^2+4 t+4\right] e^{3 t+6}\right)\right) \\
& \left.=e^{-2 s} e^6 \mathcal{L}\left(\left[t^2+4 t+4\right] e^{3 t}\right)\right) \\
& \left.=e^{-2 s+6} \mathcal{L}\left(t^2 e^{3 t}+4 t e^{3 t}+4 e^{3 t}\right)\right) \\
& =e^{-2 s+6}\left(\mathcal{L}\left(t^2 e^{3 t}\right)+4 \mathcal{L}\left(t e^{3 t}\right)+4 \mathcal{L}\left(e^{3 t}\right)\right) \\
& =e^{-2 s+6}\left(\frac{2}{(s-3)^3}+\frac{4}{(s-3)^2}+\frac{4}{(s-3)}\right) \text { since }
\end{aligned}
\]
Formula 14: \(\mathcal{L}\left(e^{c s} f(t)\right)=F(s-c).\) Thus \(\mathcal{L}\left(t^2 e^{3 t}\right)=F(s-3)=\frac{2}{(s-3)^3}\) since \(F(s)=\mathcal{L}(f(t))=\mathcal{L}\left(t^2\right)=\frac{2}{s^3}\) and \(F(s-3)=\frac{2}{(s-3)^3}.\)
Find the LaPlace transform of
\(g(t)= \begin{cases}0 & t<3 \\ e^{t-3} & t \geq 3\end{cases}\)
Solution
Note \(g(t)=u_3(t) e^{t-3}\), thus we have
\[ \notag
\mathcal{L}\left(u_3(t) e^{t-3}\right)=e^{-3 s} \mathcal{L}\left(e^t\right)=\frac{e^{-3 s}}{s-1}
\]
Find the LaPlace transform of \(f(t)= \begin{cases}0 & t<3 \\ 5 & 3 \leq t<4 \\ t-5 & t \geq 4\end{cases} \)
Solution
\begin{aligned}
& f(t)=0+u_3(t)[5-0]+u_4(t)[t-5-5]
\mathcal{L}(f(t)) & =\mathcal{L}\left(5 u_3(t)+u_4(t)[t-10]\right) \\
& =5 \mathcal{L}\left(u_3(t)\right)+\mathcal{L}\left(u_4(t)[t-10]\right) \\
& =5 e^{-3 s}+e^{-4 s} \mathcal{L}(t+4-10) \\
& =5 e^{-3 s}+e^{-4 s} \mathcal{L}(t-6) \\
& =5 e^{-3 s}+e^{-4 s}[\mathcal{L}(t)-6 \mathcal{L}(1)] \\
& =5 e^{-3 s}+e^{-4 s}\left[\frac{1}{s^2}-\frac{6}{s}\right]=5 e^{-3 s}+\frac{e^{-4 s}(1-6 s)}{s^2}
\end{aligned}
From the above theorem we have \(\mathcal{L}\left(u_c(t) f(t-c)\right)=e^{-c s} \mathcal{L}(f(t))\).
Let \(F(s)=\mathcal{L}(f(t))\).
Then \(\mathcal{L}^{-1}(F(s))=\mathcal{L}^{-1}(\mathcal{L}(f(t)))=f(t)\).
Thus \(\mathcal{L}^{-1}\left(e^{-c s} F(s)\right)\)
\[ \notag
=\mathcal{L}^{-1}\left(e^{-c s} \mathcal{L}(f(t))\right)=u_c(t) f(t-c)
\]
where \(f(t)=\mathcal{L}^{-1}(F(s))\)
Find the inverse LaPlace transform of \(\mathcal{L}^{-1}\left(e^{-8 s} \frac{1}{s-3}\right)\)
Solution
\begin{aligned}
& \text { a.) } \mathcal{L}^{-1}\left(e^{-8 s} \frac{1}{s-3}\right)=\underline{u_8(t) e^{3(t-8)}} \\
& \mathcal{L}^{-1}\left(e^{-8 s} \frac{1}{s-3}\right)=u_8(t) f(t-8) \text { where } \\
& \quad \mathcal{L}(f(t))=\frac{1}{s-3} \text {. Hence } f(t)=\mathcal{L}^{-1}\left(\frac{1}{s-3}\right)=e^{3 t}
\end{aligned}
Find the inverse LaPlace transform of \(\mathcal{L}^{-1}\left(e^{-4 s} \frac{1}{s^2-3}\right)\)
Solution
\(\mathcal{L}^{-1}\left(e^{-4 s} \frac{1}{s^2-3}\right)=u_4(t) \frac{1}{\sqrt{3}} \sinh (\sqrt{3}(t-4))\)
\(\mathcal{L}^{-1}\left(e^{-4 s} \frac{1}{s^2-3}\right)=u_4(t) f(t-4)\) where
\(\mathcal{L}(f(t))=\frac{1}{s^2-3}\). Hence \(f(t)=\frac{1}{\sqrt{3}} \mathcal{L}^{-1}\left(\frac{\sqrt{3}}{s^2-3}\right)=\frac{1}{\sqrt{3}} \sinh (\sqrt{3} t)\)
Find the inverse LaPlace transform of \(\mathcal{L}^{-1}\left(e^{-s} \frac{5}{(s-3)^4}\right)\)
Solution
\(\mathcal{L}^{-1}\left(e^{-s} \frac{5}{(s-3)^4}\right)=\underline{u_1(t)\left(\frac{5}{6}\right)(t-1)^3 e^{3(t-1)}}\)
\(\mathcal{L}^{-1}\left(e^{-s} \frac{5}{(s-3)^4}\right)=u_1(t) f(t-1)\) where
\(\mathcal{L}(f(t))=\frac{5}{(s-3)^4}\). Hence \(f(t)=\frac{5}{6} \mathcal{L}^{-1}\left(\frac{3!}{(s-3)^4}\right)=\frac{5}{6} t^3 e^{3 t}\)
Find the inverse LaPlace transform of \(\mathcal{L}^{-1}\left(\frac{e^{-s}}{4 s}\right)=\underline{\frac{1}{4} u_1(t)}\)
Solution
In this case you can use the easier formula 12 (?), or alternatively, you can use formula 13 (but formula 12 is easier to use and applies to this case):
\(\mathcal{L}^{-1}\left(\frac{e^{-s}}{4 s}\right)=\frac{1}{4} \mathcal{L}^{-1}\left(\frac{e^{-s}}{s}\right)=\frac{1}{4} u_1(t) f(t+1)\) where
\(\mathcal{L}(f(t))=\frac{1}{s}\). Hence \(f(t)=1\). Thus \(f(t-1)=1\)
Find the inverse LaPlace transform of \(\mathcal{L}^{-1}\left(e^{-s}\right)\)
Solution
\(\mathcal{L}^{-1}\left(e^{-s}\right)=\underline{\delta(t-1)}\)
Find the inverse LaPlace transform of \(\mathcal{L}^{-1}\left(e^{-s} \frac{1}{(s-3)^2+4}\right)\)
Solution
\[\notag
\begin{aligned}
& \text { f.) } \mathcal{L}^{-1}\left(e^{-s} \frac{1}{(s-3)^2+4}\right)=\underline{\frac{1}{2} u_1(t) e^{3(t-1)} \sin (2(t-1))} \\
& \mathcal{L}^{-1}\left(e^{-s} \frac{1}{(s-3)^2+4}\right)=u_1(t) f(t-1) \text { where } \\
& \left.\mathcal{L}(f(t))=\frac{1}{(s-3)^2+4}\right) \text {. } \\
&
\end{aligned}
\]
Hence \(f(t)=\frac{1}{2} \mathcal{L}^{-1}\left(\frac{2}{(s-3)^2+4}\right)=\frac{1}{2} e^{3 t} \sin (2 t)\)
Find the inverse LaPlace transform of \(\mathcal{L}^{-1}\left(e^{-s} \frac{2 s-5}{s^2+6 s+13}\right) \)
Solution
\begin{aligned}
& \mathcal{L}^{-1}\left(e^{-s} \frac{2 s-5}{s^2+6 s+13}\right) \\
& =u_1(t) e^{-3 t+1}\left[2 \cos (2 t-2)-\frac{11}{2} \sin (2 t-2)\right] \\
&
\end{aligned}
\(\frac{2 s-5}{s^2+6 s+13}=\frac{2 s-5}{s^2+6 s+9-9+13}=\frac{2 s-5}{(s+3)^2+4}=\frac{2(s+3)-6-5}{(s+3)^2+4}\)
\(\begin{aligned} \mathcal{L}^{-1}\left(\frac{2 s-5}{s^2+6 s+13}\right) & =\mathcal{L}^{-1}\left(\frac{2(s+3)-11}{(s+3)^2+4}\right) \\ & =2 \mathcal{L}^{-1}\left(\frac{s+3}{(s+3)^2+4}\right)-11 \mathcal{L}^{-1}\left(\frac{1}{(s+3)^2+4}\right) \\ & =2 \mathcal{L}^{-1}\left(\frac{s+3}{(s+3)^2+4}\right)-\frac{11}{2} \mathcal{L}^{-1}\left(\frac{2}{(s+3)^2+4}\right) \\ & =2 e^{-3 t} \cos (2 t)-\frac{11}{2} e^{-3 t} \sin (2 t)\end{aligned}\)
\(\begin{aligned} & \mathcal{L}^{-1}\left(e^{-s} \frac{2 s-5}{s^2+6 s+13}\right)=u_1(t) f(t-1) \\ & \quad=u_1(t)\left[2 e^{-3(t-1)} \cos (2(t-1))-\frac{11}{2} e^{-3(t-1)} \sin (2(t-1))\right] \\ & \quad=u_1(t) e^{-3 t+1}\left[2 \cos (2 t-2)-\frac{11}{2} \sin (2 t-2)\right]\end{aligned}\)