Skip to main content
Mathematics LibreTexts

6.3: test

  • Page ID
    154469
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Step function

    Exercise \(\PageIndex{1}\)

    Graph \(u_c(t)= \begin{cases}0 & t<c \\ 1 & t \geq c\end{cases}\).

    Answer

    Below is the answer when \(c=5\).

    import matplotlib.pyplot as plt
    import numpy as np
    from sympy import var, plot_implicit
    
    x = np.linspace(1, 10, 100)
    y = np.piecewise(x,[x < 5,x > 5],[0, 1])
    
    pos = np.where(np.abs(np.diff(y)) >= 0.5)[0] #This is just to not connect the parts of the indicator function.
    
    x[pos] = np.nan
    y[pos] = np.nan
    
    plt.plot(x, y)
    plt.grid()
    plt.show()

     

     

    Exercise \(\PageIndex{2}\)

    Graph \(g(t) =\sin(t)\).

    Answer

    Add texts here. Do not delete this text first.

    import matplotlib.pyplot as plt
    import numpy as np
    from sympy import var, plot_implicit
    
    x = np.linspace(0, 10, 100)
    y = np.sin(x)
    
    plt.plot(x, y)
    plt.grid()
    plt.show()

     

    Exercise \(\PageIndex{3}\)

    Graph \(h(t)=u_\pi(t) \sin (t) \)

    Answer
    import matplotlib.pyplot as plt
    import numpy as np
    from sympy import var, plot_implicit
    
    x = np.linspace(1, 10, 100)
    y = np.piecewise(x,[x < np.pi,x > np.pi],[0, 1]) *np.sin(x)
    
    pos = np.where(np.abs(np.diff(y)) >= 0.5)[0]
    
    x[pos] = np.nan
    y[pos] = np.nan
    
    plt.plot(x, y)
    plt.grid()
    plt.show()

     

    Exercise \(\PageIndex{4}\)

    Graph \(f(t)=2 t+u_\pi(t)[\sin (t)-2 t]= \begin{cases} t<\pi \\  t \geq \pi\end{cases}\)

    Answer

    Add texts here. Do not delete this text first.

    import matplotlib.pyplot as plt
    import numpy as np
    from sympy import var, plot_implicit
    
    x = np.linspace(1, 10, 100)
    y = np.piecewise(x,[x < 5,x >= 5],[1, 1])
    
    pos = np.where(np.abs(np.diff(y)) >= 0.5)[0]
    
    x[pos] = np.nan
    y[pos] = np.nan
    
    plt.plot(x, y)
    plt.grid()
    plt.show()

     

    Exercise \(\PageIndex{1}\)

    If \(h(t)= \begin{cases}t & 0 \leq t<4 \\ \ln (t) & t \geq 4\end{cases}\), then what does this imply about \(h(t)\)

    Answer

    Add texts here. Do not delete this text first.

    import matplotlib.pyplot as plt
    import numpy as np
    from sympy import var, plot_implicit
    
    x = np.linspace(0, 10, 100)
    y = np.piecewise(x, [x < 4,x >= 4], [lambda x: x, lambda x: np.log(x)])
    
    pos = np.where(np.abs(np.diff(y)) >= 0.5)[0]
    
    x[pos] = np.nan
    y[pos] = np.nan
    
    plt.plot(x, y)
    plt.grid()
    plt.show()

     

    Example \(\PageIndex{1}\)

    Example: \(f(t)= \begin{cases}f_1, & \text { if } t<4 \\ f_2, & \text { if } 4 \leq t<5 \\ f_3, & \text { if } 5 \leq t<10 \\ f_4, & \text { if } t \geq 10\end{cases}\)

    Solution

    Hence
    \[ \notag f(t)=f_1(t)+u_4(t)\left[f_2(t)\right.\left.-f_1(t)\right]+u_5(t)\left[f_3(t)-f_2(t)\right] +u_{10}(t)\left[f_4(t)-f_3(t)\right]\]

    Partial check

    If \(t=3: \quad f(3)  =f_1(3)+0\left[f_2(3)-f_1(3)\right] +0\left[f_3(3)-f_2(3)\right]+0\left[f_4(3)-f_3(3)\right]=f_1(3)\)

    If \(t=9: f(9)=f_1(9)+1\left[f_2(9)-f_1(9)\right]  +1\left[f_3(9)-f_2(9)\right]+0\left[f_4(9)-f_3(9)\right]=f_3(9) \)

    Example \(\PageIndex{2}\)

    \(f(t)=\left\{\begin{array}{ll}0 & 0 \leq t<2 \\ t^2 & t \geq 2\end{array} \quad\right.\) implies \(\quad f(t)=\)

    Solution

    \(f(t) = u_2(t)*t^2\)

    Example \(\PageIndex{3}\)

    \(g(t)=\left\{\begin{array}{ll}t^2 & 0 \leq t<3 \\ 0 & t \geq 3\end{array} \quad\right.\) implies \(g(t)=\)

    Solution

    \(g(t) = t^2 - u_3(t)*t^2\)

    Example \(\PageIndex{4}\)

    \(j(t)=\left\{\begin{array}{ll}t & 0 \leq t<5 \\ 2 & 5 \leq t < 8 \\ e^t & t \geq 8\end{array} \quad\right.\) implies \(j(t)=\).

    Solution

    \(j(t) = t -u_5(t) *t +2*u_5(t) -2*u_8(t) + e^t * u_8(t)\)

     

     

    Theorem \(\PageIndex{1}\)

    \[ \notag \mathcal{L}\left(u_c(t) f(t-c)\right)=e^{-c s} \mathcal{L}(f(t))\]
    or equivalently
    \[\notag
    \mathcal{L}\left(u_c(t) f(t)\right)=e^{-c s} \mathcal{L}(f(t+c)) .
    \]

    the above theorem can be restated as, replacing \(t-c\) with \(t\) is  equivalent to replacing \(t\) with  \(t+c\).

    Example \(\PageIndex{5}\)

    Find the LaPlace transform of \(\mathcal{L}\left(u_3(t)\left(t^2-2 t+1\right)\right)\)

    Solution

    \[\begin{aligned}
    & \mathcal{L}\left(u_3(t)\left(t^2-2 t+1\right)\right)=e^{-3 s}\left(\frac{2}{s^3}+\frac{4}{s^2}+\frac{4}{s}\right) \\
    & \left.\mathcal{L}\left(u_3(t)\left(t^2-2 t+1\right)\right)=e^{-3 s} \mathcal{L}\left((t+3)^2-2(t+3)+1\right)\right) \\
    & \left.=e^{-3 s} \mathcal{L}\left(t^2+6 t+9-2 t-6+1\right)\right) \\
    & =e^{-3 s} \mathcal{L}\left(t^2+4 t+4\right)=e^{-3 s}\left(\frac{2}{s^3}+\frac{4}{s^2}+\frac{4}{s}\right) \\
    &
    \end{aligned}\]

    Example \(\PageIndex{6}\)

    Find the LaPlace transform of \(\mathcal{L}\left(u_4(t)\left(e^{-8 t}\right)\right)\)

    Solution

    \[\notag \begin{aligned}
    & \mathcal{L}\left(u_4(t)\left(e^{-8 t}\right)\right)=e^{-4 s-32}\left(\frac{1}{s+8}\right) \\
    & \left.\mathcal{L}\left(u_4(t)\left(e^{-8 t}\right)\right)=e^{-4 s} \mathcal{L}\left(e^{-8(t+4)}\right)=e^{-4 s} \mathcal{L}\left(e^{-8 t} e^{-32}\right)\right) \\
    & =e^{-4 s} e^{-32} \mathcal{L}\left(e^{-8 t}\right)=e^{-4 s-32}\left(\frac{1}{s+8}\right) 
    \end{aligned}\]

    Example \(\PageIndex{7}\)

    Find the LaPlace transform of \(\mathcal{L}\left(u_2(t)\left(t^2 e^{3 t}\right)\right) \)

    Solution

    \[ \notag
    \begin{aligned}
    \mathcal{L}\left(u_2(t)\left(t^2 e^{3 t}\right)\right) & =e^{-2 s+6}\left(\frac{2}{(s-3)^3}+\frac{4}{(s-3)^2}+\frac{4}{(s-3)}\right)\\
    \mathcal{L}\left(u_2\left(t^2 e^{3 t}\right)\right) & \left.=e^{-2 s} \mathcal{L}\left(\left[(t+2)^2\right] e^{3(t+2)}\right)\right) \\
    & \left.=e^{-2 s} \mathcal{L}\left(\left[t^2+4 t+4\right] e^{3 t+6}\right)\right) \\
    & \left.=e^{-2 s} e^6 \mathcal{L}\left(\left[t^2+4 t+4\right] e^{3 t}\right)\right) \\
    & \left.=e^{-2 s+6} \mathcal{L}\left(t^2 e^{3 t}+4 t e^{3 t}+4 e^{3 t}\right)\right) \\
    & =e^{-2 s+6}\left(\mathcal{L}\left(t^2 e^{3 t}\right)+4 \mathcal{L}\left(t e^{3 t}\right)+4 \mathcal{L}\left(e^{3 t}\right)\right) \\
    & =e^{-2 s+6}\left(\frac{2}{(s-3)^3}+\frac{4}{(s-3)^2}+\frac{4}{(s-3)}\right) \text { since }
    \end{aligned}
    \]

    Formula 14: \(\mathcal{L}\left(e^{c s} f(t)\right)=F(s-c).\) Thus \(\mathcal{L}\left(t^2 e^{3 t}\right)=F(s-3)=\frac{2}{(s-3)^3}\) since \(F(s)=\mathcal{L}(f(t))=\mathcal{L}\left(t^2\right)=\frac{2}{s^3}\) and \(F(s-3)=\frac{2}{(s-3)^3}.\)

    Example \(\PageIndex{8}\)

    Find the LaPlace transform of
    \(g(t)= \begin{cases}0 & t<3 \\ e^{t-3} & t \geq 3\end{cases}\)

     

    Solution

    Note \(g(t)=u_3(t) e^{t-3}\), thus we have
    \[ \notag
    \mathcal{L}\left(u_3(t) e^{t-3}\right)=e^{-3 s} \mathcal{L}\left(e^t\right)=\frac{e^{-3 s}}{s-1}
    \]

     

    Example \(\PageIndex{9}\)

    Find the LaPlace transform of \(f(t)= \begin{cases}0 & t<3 \\ 5 & 3 \leq t<4 \\ t-5 & t \geq 4\end{cases} \)

    Solution

    \begin{aligned}
    & f(t)=0+u_3(t)[5-0]+u_4(t)[t-5-5]
    \mathcal{L}(f(t)) & =\mathcal{L}\left(5 u_3(t)+u_4(t)[t-10]\right) \\
    & =5 \mathcal{L}\left(u_3(t)\right)+\mathcal{L}\left(u_4(t)[t-10]\right) \\
    & =5 e^{-3 s}+e^{-4 s} \mathcal{L}(t+4-10) \\
    & =5 e^{-3 s}+e^{-4 s} \mathcal{L}(t-6) \\
    & =5 e^{-3 s}+e^{-4 s}[\mathcal{L}(t)-6 \mathcal{L}(1)] \\
    & =5 e^{-3 s}+e^{-4 s}\left[\frac{1}{s^2}-\frac{6}{s}\right]=5 e^{-3 s}+\frac{e^{-4 s}(1-6 s)}{s^2}
    \end{aligned}

    Note

    From the above theorem we have \(\mathcal{L}\left(u_c(t) f(t-c)\right)=e^{-c s} \mathcal{L}(f(t))\).
    Let \(F(s)=\mathcal{L}(f(t))\).
    Then \(\mathcal{L}^{-1}(F(s))=\mathcal{L}^{-1}(\mathcal{L}(f(t)))=f(t)\).
    Thus \(\mathcal{L}^{-1}\left(e^{-c s} F(s)\right)\)
    \[ \notag
    =\mathcal{L}^{-1}\left(e^{-c s} \mathcal{L}(f(t))\right)=u_c(t) f(t-c)
    \]
    where \(f(t)=\mathcal{L}^{-1}(F(s))\)

    Example \(\PageIndex{10}\)

    Find the inverse LaPlace transform of \(\mathcal{L}^{-1}\left(e^{-8 s} \frac{1}{s-3}\right)\)

    Solution

    \begin{aligned}
    & \text { a.) } \mathcal{L}^{-1}\left(e^{-8 s} \frac{1}{s-3}\right)=\underline{u_8(t) e^{3(t-8)}} \\
    & \mathcal{L}^{-1}\left(e^{-8 s} \frac{1}{s-3}\right)=u_8(t) f(t-8) \text { where } \\
    & \quad \mathcal{L}(f(t))=\frac{1}{s-3} \text {. Hence } f(t)=\mathcal{L}^{-1}\left(\frac{1}{s-3}\right)=e^{3 t}
    \end{aligned}

    Example \(\PageIndex{11}\)

    Find the inverse LaPlace transform of \(\mathcal{L}^{-1}\left(e^{-4 s} \frac{1}{s^2-3}\right)\)

    Solution

    \(\mathcal{L}^{-1}\left(e^{-4 s} \frac{1}{s^2-3}\right)=u_4(t) \frac{1}{\sqrt{3}} \sinh (\sqrt{3}(t-4))\)
    \(\mathcal{L}^{-1}\left(e^{-4 s} \frac{1}{s^2-3}\right)=u_4(t) f(t-4)\) where
    \(\mathcal{L}(f(t))=\frac{1}{s^2-3}\). Hence \(f(t)=\frac{1}{\sqrt{3}} \mathcal{L}^{-1}\left(\frac{\sqrt{3}}{s^2-3}\right)=\frac{1}{\sqrt{3}} \sinh (\sqrt{3} t)\)

    Example \(\PageIndex{12}\)

    Find the inverse LaPlace transform of \(\mathcal{L}^{-1}\left(e^{-s} \frac{5}{(s-3)^4}\right)\)

    Solution

    \(\mathcal{L}^{-1}\left(e^{-s} \frac{5}{(s-3)^4}\right)=\underline{u_1(t)\left(\frac{5}{6}\right)(t-1)^3 e^{3(t-1)}}\)
    \(\mathcal{L}^{-1}\left(e^{-s} \frac{5}{(s-3)^4}\right)=u_1(t) f(t-1)\) where
    \(\mathcal{L}(f(t))=\frac{5}{(s-3)^4}\). Hence \(f(t)=\frac{5}{6} \mathcal{L}^{-1}\left(\frac{3!}{(s-3)^4}\right)=\frac{5}{6} t^3 e^{3 t}\)

    Example \(\PageIndex{13}\)

    Find the inverse LaPlace transform of \(\mathcal{L}^{-1}\left(\frac{e^{-s}}{4 s}\right)=\underline{\frac{1}{4} u_1(t)}\)

    Solution

    In this case you can use the easier formula 12 (?), or alternatively, you can use formula 13 (but formula 12 is easier to use and applies to this case):
    \(\mathcal{L}^{-1}\left(\frac{e^{-s}}{4 s}\right)=\frac{1}{4} \mathcal{L}^{-1}\left(\frac{e^{-s}}{s}\right)=\frac{1}{4} u_1(t) f(t+1)\) where
    \(\mathcal{L}(f(t))=\frac{1}{s}\). Hence \(f(t)=1\). Thus \(f(t-1)=1\)

    Example \(\PageIndex{14}\)

    Find the inverse LaPlace transform of \(\mathcal{L}^{-1}\left(e^{-s}\right)\)

    Solution

    \(\mathcal{L}^{-1}\left(e^{-s}\right)=\underline{\delta(t-1)}\)

    Example \(\PageIndex{15}\)

    Find the inverse LaPlace transform of \(\mathcal{L}^{-1}\left(e^{-s} \frac{1}{(s-3)^2+4}\right)\)

    Solution

    \[\notag
    \begin{aligned}
    & \text { f.) } \mathcal{L}^{-1}\left(e^{-s} \frac{1}{(s-3)^2+4}\right)=\underline{\frac{1}{2} u_1(t) e^{3(t-1)} \sin (2(t-1))} \\
    & \mathcal{L}^{-1}\left(e^{-s} \frac{1}{(s-3)^2+4}\right)=u_1(t) f(t-1) \text { where } \\
    & \left.\mathcal{L}(f(t))=\frac{1}{(s-3)^2+4}\right) \text {. } \\
    &
    \end{aligned}
    \]

    Hence \(f(t)=\frac{1}{2} \mathcal{L}^{-1}\left(\frac{2}{(s-3)^2+4}\right)=\frac{1}{2} e^{3 t} \sin (2 t)\)

    Example \(\PageIndex{16}\)

    Find the inverse LaPlace transform of \(\mathcal{L}^{-1}\left(e^{-s} \frac{2 s-5}{s^2+6 s+13}\right) \)

    Solution

    \begin{aligned}
    & \mathcal{L}^{-1}\left(e^{-s} \frac{2 s-5}{s^2+6 s+13}\right) \\
    & =u_1(t) e^{-3 t+1}\left[2 \cos (2 t-2)-\frac{11}{2} \sin (2 t-2)\right] \\
    &
    \end{aligned}

    \(\frac{2 s-5}{s^2+6 s+13}=\frac{2 s-5}{s^2+6 s+9-9+13}=\frac{2 s-5}{(s+3)^2+4}=\frac{2(s+3)-6-5}{(s+3)^2+4}\)

    \(\begin{aligned} \mathcal{L}^{-1}\left(\frac{2 s-5}{s^2+6 s+13}\right) & =\mathcal{L}^{-1}\left(\frac{2(s+3)-11}{(s+3)^2+4}\right) \\ & =2 \mathcal{L}^{-1}\left(\frac{s+3}{(s+3)^2+4}\right)-11 \mathcal{L}^{-1}\left(\frac{1}{(s+3)^2+4}\right) \\ & =2 \mathcal{L}^{-1}\left(\frac{s+3}{(s+3)^2+4}\right)-\frac{11}{2} \mathcal{L}^{-1}\left(\frac{2}{(s+3)^2+4}\right) \\ & =2 e^{-3 t} \cos (2 t)-\frac{11}{2} e^{-3 t} \sin (2 t)\end{aligned}\)

    \(\begin{aligned} & \mathcal{L}^{-1}\left(e^{-s} \frac{2 s-5}{s^2+6 s+13}\right)=u_1(t) f(t-1) \\ & \quad=u_1(t)\left[2 e^{-3(t-1)} \cos (2(t-1))-\frac{11}{2} e^{-3(t-1)} \sin (2(t-1))\right] \\ & \quad=u_1(t) e^{-3 t+1}\left[2 \cos (2 t-2)-\frac{11}{2} \sin (2 t-2)\right]\end{aligned}\)

     


    This page titled 6.3: test is shared under a not declared license and was authored, remixed, and/or curated by Isabel K. Darcy.

    • Was this article helpful?