Loading [MathJax]/extensions/TeX/newcommand.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

7.2: Division with Exponents

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}

( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\id}{\mathrm{id}}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\kernel}{\mathrm{null}\,}

\newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}}

\newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}}

\newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}

\newcommand{\vectorA}[1]{\vec{#1}}      % arrow

\newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow

\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vectorC}[1]{\textbf{#1}} 

\newcommand{\vectorD}[1]{\overrightarrow{#1}} 

\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} 

\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}
Learning Objectives

By the end of this section, you will be able to:

  • Simplify expressions using the Quotient Property of Exponents
  • Simplify expressions with zero exponents
  • Simplify expressions using the Quotient to a Power Property
  • Simplify expressions by applying several properties
  • Divide monomials

Be Prepared 10.9

Before you get started, take this readiness quiz.

Simplify: 824.824.
If you missed the problem, review Example 4.19.

Be Prepared 10.10

Simplify: (2m3)5.(2m3)5.
If you missed the problem, review Example 10.23.

Be Prepared 10.11

Simplify: 12x12y.12x12y.
If you missed the problem, review Example 4.23.

Simplify Expressions Using the Quotient Property of Exponents

Earlier in this chapter, we developed the properties of exponents for multiplication. We summarize these properties here.

Summary of Exponent Properties for Multiplication

If a,ba,b are real numbers and m,nm,n are whole numbers, then

Product Propertyaman=am+nPower Property(am)n=amnProduct to a Power(ab)m=ambmProduct Propertyaman=am+nPower Property(am)n=amnProduct to a Power(ab)m=ambm

Now we will look at the exponent properties for division. A quick memory refresher may help before we get started. In Fractions you learned that fractions may be simplified by dividing out common factors from the numerator and denominator using the Equivalent Fractions Property. This property will also help us work with algebraic fractions—which are also quotients.

Equivalent Fractions Property

If a,b,ca,b,c are whole numbers where b0,c0,b0,c0, then

ab=a·cb·canda·cb·c=abab=a·cb·canda·cb·c=ab

As before, we'll try to discover a property by looking at some examples.

Considerx5x2andx2x3What do they mean?xxxxxxxxxxxxUse the Equivalent Fractions Property.xxxxxxx1xx1xxxSimplify.x31xConsiderx5x2andx2x3What do they mean?xxxxxxxxxxxxUse the Equivalent Fractions Property.xxxxxxx1xx1xxxSimplify.x31x

Notice that in each case the bases were the same and we subtracted the exponents.

  • When the larger exponent was in the numerator, we were left with factors in the numerator and 11 in the denominator, which we simplified.
  • When the larger exponent was in the denominator, we were left with factors in the denominator, and 11 in the numerator, which could not be simplified.

We write:

Quotient Property of Exponents

If aa is a real number, a0,a0, and m,nm,n are whole numbers, then

aman=amn,m>nandaman=1anm,n>maman=amn,m>nandaman=1anm,n>m

A couple of examples with numbers may help to verify this property.

3432=?3425253=?1532819=?3225125=?1519=915=153432=?3425253=?1532819=?3225125=?1519=915=15

When we work with numbers and the exponent is less than or equal to 3,3, we will apply the exponent. When the exponent is greater than 33, we leave the answer in exponential form.

Example 10.45

Simplify:

  1. x10x8x10x8
  2. 29222922
Answer

To simplify an expression with a quotient, we need to first compare the exponents in the numerator and denominator.

Since 10 > 8, there are more factors of xx in the numerator. x10x8x10x8
Use the quotient property with m>n,aman=amnm>n,aman=amn. .
Simplify. x2x2
Since 9 > 2, there are more factors of 2 in the numerator. 29222922
Use the quotient property with m>n,aman=amn.m>n,aman=amn. .
Simplify. 2727

Notice that when the larger exponent is in the numerator, we are left with factors in the numerator.

Try It 10.89

Simplify:

  1. x12x9x12x9
  2. 7147571475

Try It 10.90

Simplify:

  1. y23y17y23y17
  2. 8158781587

Example 10.46

Simplify:

  1. b10b15b10b15
  2. 33353335
Answer

To simplify an expression with a quotient, we need to first compare the exponents in the numerator and denominator.

Since 15 > 10, there are more factors of bb in the denominator. b10b15b10b15
Use the quotient property with n>m,aman=1anm.n>m,aman=1anm. .
Simplify. 1b51b5
Since 5 > 3, there are more factors of 3 in the denominator. 33353335
Use the quotient property with n>m,aman=1anm.n>m,aman=1anm. .
Simplify. 132132
Apply the exponent. 1919

Notice that when the larger exponent is in the denominator, we are left with factors in the denominator and 11 in the numerator.

Try It 10.91

Simplify:

  1. x8x15x8x15
  2. 1211122112111221

Try It 10.92

Simplify:

  1. m17m26m17m26
  2. 7871478714

Example 10.47

Simplify:

  1. a5a9a5a9
  2. x11x7x11x7
Answer

Since 9 > 5, there are more aa's in the denominator and so we will end up with factors in the denominator. a5a9a5a9
Use the Quotient Property for n>m,aman=1anm.n>m,aman=1anm. .
Simplify. 1a41a4
Notice there are more factors of xx in the numerator, since 11 > 7. So we will end up with factors in the numerator. x11x7x11x7
Use the Quotient Property for m>n,aman=anm.m>n,aman=anm. .
Simplify. x4x4

Try It 10.93

Simplify:

  1. b19b11b19b11
  2. z5z11z5z11

Try It 10.94

Simplify:

  1. p9p17p9p17
  2. w13w9w13w9

Simplify Expressions with Zero Exponents

A special case of the Quotient Property is when the exponents of the numerator and denominator are equal, such as an expression like amam.amam. From earlier work with fractions, we know that

22=11717=1−43−43=122=11717=1−43−43=1

In words, a number divided by itself is 1.1. So xx=1,xx=1, for any xx (x0x0), since any number divided by itself is 1.1.

The Quotient Property of Exponents shows us how to simplify amanaman when m>nm>n and when n<mn<m by subtracting exponents. What if m=nm=n?

Now we will simplify amamamam in two ways to lead us to the definition of the zero exponent.

Consider first 88,88, which we know is 1.1.

88=188=1
Write 8 as 2323. 2323=12323=1
Subtract exponents. 233=1233=1
Simplify. 20=120=1

.

We see amanaman simplifies to a a0a0 and to 11. So a0=1a0=1.

Zero Exponent

If aa is a non-zero number, then a0=1.a0=1.

Any nonzero number raised to the zero power is 1.1.

In this text, we assume any variable that we raise to the zero power is not zero.

Example 10.48

Simplify:

  1. 120120
  2. y0y0
Answer

The definition says any non-zero number raised to the zero power is 1.1.

120120
Use the definition of the zero exponent. 1
y0y0
Use the definition of the zero exponent. 1

Try It 10.95

Simplify:

  1. 170170
  2. m0m0

Try It 10.96

Simplify:

  1. k0k0
  2. 290290

Now that we have defined the zero exponent, we can expand all the Properties of Exponents to include whole number exponents.

What about raising an expression to the zero power? Let's look at (2x)0.(2x)0. We can use the product to a power rule to rewrite this expression.

(2x)0(2x)0
Use the Product to a Power Rule. 20x020x0
Use the Zero Exponent Property. 1111
Simplify. 1

This tells us that any non-zero expression raised to the zero power is one.

Example 10.49

Simplify: (7z)0.(7z)0.

Answer

(7z)0(7z)0
Use the definition of the zero exponent. 1

Try It 10.97

Simplify: (−4y)0.(−4y)0.

Try It 10.98

Simplify: (23x)0.(23x)0.

Example 10.50

Simplify:

  1. (−3x2y)0(−3x2y)0
  2. −3x2y0−3x2y0
Answer

The product is raised to the zero power. (−3x2y)0(−3x2y)0
Use the definition of the zero exponent. 11
Notice that only the variable yy is being raised to the zero power. −3x2y0−3x2y0
Use the definition of the zero exponent. −3x21−3x21
Simplify. −3x2−3x2

Try It 10.99

Simplify:

  1. (7x2y)0(7x2y)0
  2. 7x2y07x2y0

Try It 10.100

Simplify:

  1. −23x2y0−23x2y0
  2. (−23x2y)0(−23x2y)0

Simplify Expressions Using the Quotient to a Power Property

Now we will look at an example that will lead us to the Quotient to a Power Property.

(xy)3(xy)3
This means xyxyxyxyxyxy
Multiply the fractions. xxxyyyxxxyyy
Write with exponents. x3y3x3y3

Notice that the exponent applies to both the numerator and the denominator.

We see that (xy)3(xy)3 is x3y3.x3y3.

We write:(xy)3x3y3We write:(xy)3x3y3

This leads to the Quotient to a Power Property for Exponents.

Quotient to a Power Property of Exponents

If aa and bb are real numbers, b0,b0, and mm is a counting number, then

(ab)m=ambm(ab)m=ambm

To raise a fraction to a power, raise the numerator and denominator to that power.

An example with numbers may help you understand this property:

(23)3=?2333232323=?827827=827(23)3=?2333232323=?827827=827

Example 10.51

Simplify:

  1. (58)2(58)2
  2. (x3)4(x3)4
  3. (ym)3(ym)3
Answer

.
Use the Quotient to a Power Property, (ab)m=ambm(ab)m=ambm. .
Simplify. .
.
Use the Quotient to a Power Property, (ab)m=ambm(ab)m=ambm. .
Simplify. .
.
Raise the numerator and denominator to the third power. .

Try It 10.101

Simplify:

  1. (79)2(79)2
  2. (y8)3(y8)3
  3. (pq)6(pq)6

Try It 10.102

Simplify:

  1. (18)2(18)2
  2. (−5m)3(−5m)3
  3. (rs)4(rs)4

Simplify Expressions by Applying Several Properties

We'll now summarize all the properties of exponents so they are all together to refer to as we simplify expressions using several properties. Notice that they are now defined for whole number exponents.

Summary of Exponent Properties

If a,ba,b are real numbers and m,nm,n are whole numbers, then

Product Propertyaman=am+nPower Property(am)n=amnProduct to a Power Property(ab)m=ambmQuotient Propertyaman=amn,a0,m>naman=1anm,a0,n>mZero Exponent Definitiona0=1,a0Quotient to a Power Property(ab)m=ambm,b0Product Propertyaman=am+nPower Property(am)n=amnProduct to a Power Property(ab)m=ambmQuotient Propertyaman=amn,a0,m>naman=1anm,a0,n>mZero Exponent Definitiona0=1,a0Quotient to a Power Property(ab)m=ambm,b0

Example 10.52

Simplify: (x2)3x5.(x2)3x5.

Answer

(x2)3x5(x2)3x5
Multiply the exponents in the numerator, using the
Power Property.
x6x5x6x5
Subtract the exponents. xx

Try It 10.103

Simplify: (a4)5a9.(a4)5a9.

Try It 10.104

Simplify: (b5)6b11.(b5)6b11.

Example 10.53

Simplify: m8(m2)4.m8(m2)4.

Answer

m8(m2)4m8(m2)4
Multiply the exponents in the numerator, using the
Power Property.
m8m8m8m8
Subtract the exponents. m0m0
Zero power property 11

Try It 10.105

Simplify: k11(k3)3.k11(k3)3.

Try It 10.106

Simplify: d23(d4)6.d23(d4)6.

Example 10.54

Simplify: (x7x3)2.(x7x3)2.

Answer

(x7x3)2(x7x3)2
Remember parentheses come before exponents, and the
bases are the same so we can simplify inside the
parentheses. Subtract the exponents.
(x73)2(x73)2
Simplify. (x4)2(x4)2
Multiply the exponents. x8x8

Try It 10.107

Simplify: (f14f8)2.(f14f8)2.

Try It 10.108

Simplify: (b6b11)2.(b6b11)2.

Example 10.55

Simplify: (p2q5)3.(p2q5)3.

Answer

Here we cannot simplify inside the parentheses first, since the bases are not the same.

(p2q5)3(p2q5)3
Raise the numerator and denominator to the third power
using the Quotient to a Power Property, (ab)m=ambm(ab)m=ambm
(p2)3(q5)3(p2)3(q5)3
Use the Power Property, (am)n=amn.(am)n=amn. p6q15p6q15

Try It 10.109

Simplify: (m3n8)5.(m3n8)5.

Try It 10.110

Simplify: (t10u7)2.(t10u7)2.

Example 10.56

Simplify: (2x33y)4.(2x33y)4.

Answer

(2x33y)4(2x33y)4
Raise the numerator and denominator to the fourth
power using the Quotient to a Power Property.
(2x3)4(3y)4(2x3)4(3y)4
Raise each factor to the fourth power, using the Power
to a Power Property.
24(x3)434y424(x3)434y4
Use the Power Property and simplify. 16x1281y416x1281y4

Try It 10.111

Simplify: (5b9c3)2.(5b9c3)2.

Try It 10.112

Simplify: (4p47q5)3.(4p47q5)3.

Example 10.57

Simplify: (y2)3(y2)4(y5)4.(y2)3(y2)4(y5)4.

Answer

(y2)3(y2)4(y5)4(y2)3(y2)4(y5)4
Use the Power Property. (y6)(y8)y20(y6)(y8)y20
Add the exponents in the numerator, using the Product Property. y14y20y14y20
Use the Quotient Property. 1y61y6

Try It 10.113

Simplify: (y4)4(y3)5(y7)6.(y4)4(y3)5(y7)6.

Try It 10.114

Simplify: (3x4)2(x3)4(x5)3.(3x4)2(x3)4(x5)3.

Divide Monomials

We have now seen all the properties of exponents. We'll use them to divide monomials. Later, you'll use them to divide polynomials.

Example 10.58

Find the quotient: 56x5÷7x2.56x5÷7x2.

Answer

56x5÷7x256x5÷7x2
Rewrite as a fraction. 56x57x256x57x2
Use fraction multiplication to separate the number
part from the variable part.
567x5x2567x5x2
Use the Quotient Property. 8x38x3

Try It 10.115

Find the quotient: 63x8÷9x4.63x8÷9x4.

Try It 10.116

Find the quotient: 96y11÷6y8.96y11÷6y8.

When we divide monomials with more than one variable, we write one fraction for each variable.

Example 10.59

Find the quotient: 42x2y3−7xy5.42x2y3−7xy5.

Answer

42x2y3−7xy542x2y3−7xy5
Use fraction multiplication. 42−7x2xy3y542−7x2xy3y5
Simplify and use the Quotient Property. −6x1y2−6x1y2
Multiply. 6xy26xy2

Try It 10.117

Find the quotient: −84x8y37x10y2.−84x8y37x10y2.

Try It 10.118

Find the quotient: −72a4b5−8a9b5.−72a4b5−8a9b5.

Example 10.60

Find the quotient: 24a5b348ab4.24a5b348ab4.

Answer

24a5b348ab424a5b348ab4
Use fraction multiplication. 2448a5ab3b42448a5ab3b4
Simplify and use the Quotient Property. 12a41b12a41b
Multiply. a42ba42b

Try It 10.119

Find the quotient: 16a7b624ab8.16a7b624ab8.

Try It 10.120

Find the quotient: 27p4q7−45p12q.27p4q7−45p12q.

Once you become familiar with the process and have practiced it step by step several times, you may be able to simplify a fraction in one step.

Example 10.61

Find the quotient: 14x7y1221x11y6.14x7y1221x11y6.

Answer

14x7y1221x11y614x7y1221x11y6
Simplify and use the Quotient Property. 2y63x42y63x4

Be very careful to simplify 14211421 by dividing out a common factor, and to simplify the variables by subtracting their exponents.

Try It 10.121

Find the quotient: 28x5y1449x9y12.28x5y1449x9y12.

Try It 10.122

Find the quotient: 30m5n1148m10n14.30m5n1148m10n14.

In all examples so far, there was no work to do in the numerator or denominator before simplifying the fraction. In the next example, we'll first find the product of two monomials in the numerator before we simplify the fraction.

Example 10.62

Find the quotient: (3x3y2)(10x2y3)6x4y5.(3x3y2)(10x2y3)6x4y5.

Answer

Remember, the fraction bar is a grouping symbol. We will simplify the numerator first.

(3x3y2)(10x2y3)6x4y5(3x3y2)(10x2y3)6x4y5
Simplify the numerator. 30x5y56x4y530x5y56x4y5
Simplify, using the Quotient Rule. 5x5x

Try It 10.123

Find the quotient: (3x4y5)(8x2y5)12x5y8.(3x4y5)(8x2y5)12x5y8.

Try It 10.124

Find the quotient: (−6a6b9)(−8a5b8)−12a10b12.(−6a6b9)(−8a5b8)−12a10b12.

Media

Section 10.4 Exercises

Practice Makes Perfect

Simplify Expressions Using the Quotient Property of Exponents

In the following exercises, simplify.

219.

4 8 4 2 4 8 4 2

220.

3 12 3 4 3 12 3 4

221.

x 12 x 3 x 12 x 3

222.

u 9 u 3 u 9 u 3

223.

r 5 r r 5 r

224.

y 4 y y 4 y

225.

y 4 y 20 y 4 y 20

226.

x 10 x 30 x 10 x 30

227.

10 3 10 15 10 3 10 15

228.

r 2 r 8 r 2 r 8

229.

a a 9 a a 9

230.

2 2 5 2 2 5

Simplify Expressions with Zero Exponents

In the following exercises, simplify.

231.

5 0 5 0

232.

10 0 10 0

233.

a 0 a 0

234.

x 0 x 0

235.

7 0 7 0

236.

4 0 4 0

237.
  1. ( 10 p ) 0 ( 10 p ) 0
  2. 10 p 0 10 p 0
238.
  1. ( 3 a ) 0 ( 3 a ) 0
  2. 3 a 0 3 a 0
239.
  1. ( −27 x 5 y ) 0 ( −27 x 5 y ) 0
  2. −27 x 5 y 0 −27 x 5 y 0
240.
  1. ( −92 y 8 z ) 0 ( −92 y 8 z ) 0
  2. −92 y 8 z 0 −92 y 8 z 0
241.
  1. 15 0 15 0
  2. 15 1 15 1
242.
  1. 6 0 6 0
  2. 6 1 6 1
243.

2 · x 0 + 5 · y 0 2 · x 0 + 5 · y 0

244.

8 · m 0 4 · n 0 8 · m 0 4 · n 0

Simplify Expressions Using the Quotient to a Power Property

In the following exercises, simplify.

245.

( 3 2 ) 5 ( 3 2 ) 5

246.

( 4 5 ) 3 ( 4 5 ) 3

247.

( m 6 ) 3 ( m 6 ) 3

248.

( p 2 ) 5 ( p 2 ) 5

249.

( x y ) 10 ( x y ) 10

250.

( a b ) 8 ( a b ) 8

251.

( a 3 b ) 2 ( a 3 b ) 2

252.

( 2 x y ) 4 ( 2 x y ) 4

Simplify Expressions by Applying Several Properties

In the following exercises, simplify.

253.

( x 2 ) 4 x 5 ( x 2 ) 4 x 5

254.

( y 4 ) 3 y 7 ( y 4 ) 3 y 7

255.

( u 3 ) 4 u 10 ( u 3 ) 4 u 10

256.

( y 2 ) 5 y 6 ( y 2 ) 5 y 6

257.

y 8 ( y 5 ) 2 y 8 ( y 5 ) 2

258.

p 11 ( p 5 ) 3 p 11 ( p 5 ) 3

259.

r 5 r 4 · r r 5 r 4 · r

260.

a 3 · a 4 a 7 a 3 · a 4 a 7

261.

( x 2 x 8 ) 3 ( x 2 x 8 ) 3

262.

( u u 10 ) 2 ( u u 10 ) 2

263.

( a 4 · a 6 a 3 ) 2 ( a 4 · a 6 a 3 ) 2

264.

( x 3 · x 8 x 4 ) 3 ( x 3 · x 8 x 4 ) 3

265.

( y 3 ) 5 ( y 4 ) 3 ( y 3 ) 5 ( y 4 ) 3

266.

( z 6 ) 2 ( z 2 ) 4 ( z 6 ) 2 ( z 2 ) 4

267.

( x 3 ) 6 ( x 4 ) 7 ( x 3 ) 6 ( x 4 ) 7

268.

( x 4 ) 8 ( x 5 ) 7 ( x 4 ) 8 ( x 5 ) 7

269.

( 2 r 3 5 s ) 4 ( 2 r 3 5 s ) 4

270.

( 3 m 2 4 n ) 3 ( 3 m 2 4 n ) 3

271.

( 3 y 2 · y 5 y 15 · y 8 ) 0 ( 3 y 2 · y 5 y 15 · y 8 ) 0

272.

( 15 z 4 · z 9 0.3 z 2 ) 0 ( 15 z 4 · z 9 0.3 z 2 ) 0

273.

( r 2 ) 5 ( r 4 ) 2 ( r 3 ) 7 ( r 2 ) 5 ( r 4 ) 2 ( r 3 ) 7

274.

( p 4 ) 2 ( p 3 ) 5 ( p 2 ) 9 ( p 4 ) 2 ( p 3 ) 5 ( p 2 ) 9

275.

( 3 x 4 ) 3 ( 2 x 3 ) 2 ( 6 x 5 ) 2 ( 3 x 4 ) 3 ( 2 x 3 ) 2 ( 6 x 5 ) 2

276.

( −2 y 3 ) 4 ( 3 y 4 ) 2 ( −6 y 3 ) 2 ( −2 y 3 ) 4 ( 3 y 4 ) 2 ( −6 y 3 ) 2

Divide Monomials

In the following exercises, divide the monomials.

277.

48 b 8 ÷ 6 b 2 48 b 8 ÷ 6 b 2

278.

42 a 14 ÷ 6 a 2 42 a 14 ÷ 6 a 2

279.

36 x 3 ÷ ( −2 x 9 ) 36 x 3 ÷ ( −2 x 9 )

280.

20 u 8 ÷ ( −4 u 6 ) 20 u 8 ÷ ( −4 u 6 )

281.

18 x 3 9 x 2 18 x 3 9 x 2

282.

36 y 9 4 y 7 36 y 9 4 y 7

283.

−35 x 7 −42 x 13 −35 x 7 −42 x 13

284.

18 x 5 −27 x 9 18 x 5 −27 x 9

285.

18 r 5 s 3 r 3 s 9 18 r 5 s 3 r 3 s 9

286.

24 p 7 q 6 p 2 q 5 24 p 7 q 6 p 2 q 5

287.

8 m n 10 64 m n 4 8 m n 10 64 m n 4

288.

10 a 4 b 50 a 2 b 6 10 a 4 b 50 a 2 b 6

289.

−12 x 4 y 9 15 x 6 y 3 −12 x 4 y 9 15 x 6 y 3

290.

48 x 11 y 9 z 3 36 x 6 y 8 z 5 48 x 11 y 9 z 3 36 x 6 y 8 z 5

291.

64 x 5 y 9 z 7 48 x 7 y 12 z 6 64 x 5 y 9 z 7 48 x 7 y 12 z 6

292.

( 10 u 2 v ) ( 4 u 3 v 6 ) 5 u 9 v 2 ( 10 u 2 v ) ( 4 u 3 v 6 ) 5 u 9 v 2

293.

( 6 m 2 n ) ( 5 m 4 n 3 ) 3 m 10 n 2 ( 6 m 2 n ) ( 5 m 4 n 3 ) 3 m 10 n 2

294.

( 6 a 4 b 3 ) ( 4 a b 5 ) ( 12 a 8 b ) ( a 3 b ) ( 6 a 4 b 3 ) ( 4 a b 5 ) ( 12 a 8 b ) ( a 3 b )

295.

( 4 u 5 v 4 ) ( 15 u 8 v ) ( 12 u 3 v ) ( u 6 v ) ( 4 u 5 v 4 ) ( 15 u 8 v ) ( 12 u 3 v ) ( u 6 v )

Mixed Practice

296.
  1. 24 a 5 + 2 a 5 24 a 5 + 2 a 5
  2. 24 a 5 2 a 5 24 a 5 2 a 5
  3. 24 a 5 2 a 5 24 a 5 2 a 5
  4. 24 a 5 ÷ 2 a 5 24 a 5 ÷ 2 a 5
297.
  1. 15 n 10 + 3 n 10 15 n 10 + 3 n 10
  2. 15 n 10 3 n 10 15 n 10 3 n 10
  3. 15 n 10 3 n 10 15 n 10 3 n 10
  4. 15 n 10 ÷ 3 n 10 15 n 10 ÷ 3 n 10
298.
  1. p4p6p4p6
  2. ( p 4 ) 6 ( p 4 ) 6
299.
  1. q5q3q5q3
  2. ( q 5 ) 3 ( q 5 ) 3
300.
  1. y3yy3y
  2. y y 3 y y 3
301.
  1. z6z5z6z5
  2. z 5 z 6 z 5 z 6
302.

(8x5)(9x)÷6x3(8x5)(9x)÷6x3

303.

(4y)(12y7)÷8y2(4y)(12y7)÷8y2

304.

27 a 7 3 a 3 + 54 a 9 9 a 5 27 a 7 3 a 3 + 54 a 9 9 a 5

305.

32c114c5+42c96c332c114c5+42c96c3

306.

32y58y260y105y732y58y260y105y7

307.

48x66x435x97x748x66x435x97x7

308.

63r6s39r4s272r2s26s63r6s39r4s272r2s26s

309.

56y4z57y3z345y2z25y56y4z57y3z345y2z25y

Everyday Math

310.

Memory One megabyte is approximately 106106 bytes. One gigabyte is approximately 109109 bytes. How many megabytes are in one gigabyte?

311.

Memory One megabyte is approximately 106106 bytes. One terabyte is approximately 10121012 bytes. How many megabytes are in one terabyte?

Writing Exercises

312.

Vic thinks the quotient x20x4x20x4 simplifies to x5.x5. What is wrong with his reasoning?

313.

Mai simplifies the quotient y3yy3y by writing y3y=3.y3y=3. What is wrong with her reasoning?

314.

When Dimple simplified 3030 and (−3)0(−3)0 she got the same answer. Explain how using the Order of Operations correctly gives different answers.

315.

Roxie thinks n0n0 simplifies to 0.0. What would you say to convince Roxie she is wrong?

Self Check

After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

.

On a scale of 1–10, how would you rate your mastery of this section in light of your responses on the checklist? How can you improve this?


This page titled 7.2: Division with Exponents is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by OpenStax.

  • Was this article helpful?

Support Center

How can we help?