Elementary Laplace Transforms
( \newcommand{\kernel}{\mathrm{null}\,}\)
L{1}(s) | = | 1s(s>0) | (1) |
L{eat}(s) | = | 1s−a(s>a) | (2) |
L{tn}(s) | = | n!sn+1(s>0,n is a positive integer) | (3) |
L{tp}(s) | = | 4) | |
L{sin(at)}(s) | = | as2+a2(s>0) | (5) |
L{cos(at)}(s) | = | ss2+a2(s>0) | (6) |
L{eat⋅sin(bt)}(s) | = | b(s−a)2+b2(s>a) | (7) |
L{eat⋅cos(bt)}(s) | = | s−a(s−a)2+b2(s>a) | (8) |
L{tn⋅eat}(s) | = | n!(s−a)n+1(s>a) | (9) |
L{tn⋅f(t)}(s) | = | (−1)ndndsnL{f(t)}(s) | (10) |
L{f′(t)}(s) | = | s⋅L{f(t)}−f(0) | (11) |
L{Hc(t)}(s) | = | e−css(s>0) | (12) |
L{Hc(t)⋅f(t−c)}(s) | = | e−csL{f(t)}(s) | (13) |
L{Hc(t)⋅f(t)}(s) | = | e−csL{f(t+c)}(s) | (14) |
L{δc(t)}(s) | = | e−cs | (15) |
L{e(ctcdotf(t)}(s) | = | L{f(t)}(s−c) | (16) |