Search
- Filter Results
- Location
- Classification
- Include attachments
- https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/Professor_Holz'_Topics_in_Contemporary_Mathematics/03%3A_Number_Bases_and_Modular_Arithmetic/3.05%3A_Cryptography/3.5.03%3A_Public_Key_Cryptography\(\begin{array}{llll} & \textbf{Alice} & & \textbf{Bob} \\ \text{Alice and Bob publically} & g=3, p=17 & \text{Common info} & g=3, p=17 \\ \text{share a generator and prime} & & & \\ \text{modulus.} &...\(\begin{array}{llll} & \textbf{Alice} & & \textbf{Bob} \\ \text{Alice and Bob publically} & g=3, p=17 & \text{Common info} & g=3, p=17 \\ \text{share a generator and prime} & & & \\ \text{modulus.} & & & \\ \text{Each then secretly picks a} & n = 8 & \text{secret number} & n=6 \\ \text{number n of their own.} & & & \\ \text{Each calculates } g^n \bmod p & 3^{8} \bmod 17=16 & & 3^{6} \bmod 17=15 \\ \text{They then exchange these} & A=16 & & B=15 \\ \text{resulting values.} & B=15 & & A=16\\ \te…
- https://math.libretexts.org/Bookshelves/Applied_Mathematics/Math_in_Society_(Lippman)/16%3A_Cryptography/16.05%3A_Public_Key_Cryptography\(\begin{array}{llll} & \textbf{Alice} & & \textbf{Bob} \\ \text{Alice and Bob publically} & g=3, p=17 & \text{Common info} & g=3, p=17 \\ \text{share a generator and prime} & & & \\ \text{modulus.} &...\(\begin{array}{llll} & \textbf{Alice} & & \textbf{Bob} \\ \text{Alice and Bob publically} & g=3, p=17 & \text{Common info} & g=3, p=17 \\ \text{share a generator and prime} & & & \\ \text{modulus.} & & & \\ \text{Each then secretly picks a} & n = 8 & \text{secret number} & n=6 \\ \text{number n of their own.} & & & \\ \text{Each calculates } g^n \bmod p & 3^{8} \bmod 17=16 & & 3^{6} \bmod 17=15 \\ \text{They then exchange these} & A=16 & & B=15 \\ \text{resulting values.} & B=15 & & A=16\\ \te…
- https://math.libretexts.org/Courses/Las_Positas_College/Math_for_Liberal_Arts/06%3A_Cryptography/6.05%3A_Public_Key_Cryptography\(\begin{array}{llll} & \textbf{Alice} & & \textbf{Bob} \\ \text{Alice and Bob publically} & g=3, p=17 & \text{Common info} & g=3, p=17 \\ \text{share a generator and prime} & & & \\ \text{modulus.} &...\(\begin{array}{llll} & \textbf{Alice} & & \textbf{Bob} \\ \text{Alice and Bob publically} & g=3, p=17 & \text{Common info} & g=3, p=17 \\ \text{share a generator and prime} & & & \\ \text{modulus.} & & & \\ \text{Each then secretly picks a} & n = 8 & \text{secret number} & n=6 \\ \text{number n of their own.} & & & \\ \text{Each calculates } g^n \bmod p & 3^{8} \bmod 17=16 & & 3^{6} \bmod 17=15 \\ \text{They then exchange these} & A=16 & & B=15 \\ \text{resulting values.} & B=15 & & A=16\\ \te…