Loading [MathJax]/jax/input/MathML/config.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 4 results
  • https://math.libretexts.org/Bookshelves/Differential_Equations/A_Second_Course_in_Ordinary_Differential_Equations%3A_Dynamical_Systems_and_Boundary_Value_Problems_(Herman)/05%3A_Fourier_Series/5.02%3A_Fourier_Trigonometric_Series
    \[\dfrac{a_{0}}{2} \int_{0}^{2 \pi} \cos m x d x+\sum_{n=1}^{\infty}\left[a_{n} \int_{0}^{2 \pi} \cos n x \cos m x d x+b_{n} \int_{0}^{2 \pi} \sin n x \cos m x d x\right]. \label{5.6} \] \int_{0}^{2 \...\[\dfrac{a_{0}}{2} \int_{0}^{2 \pi} \cos m x d x+\sum_{n=1}^{\infty}\left[a_{n} \int_{0}^{2 \pi} \cos n x \cos m x d x+b_{n} \int_{0}^{2 \pi} \sin n x \cos m x d x\right]. \label{5.6} \] \int_{0}^{2 \pi} \cos n x \cos m x d x &=\dfrac{1}{2} \int_{0}^{2 \pi}[\cos (m+n) x+\cos (m-n) x] d x \\[4pt] \[\int_{0}^{2 \pi} \sin m x \cos m x d x=\dfrac{1}{2} \int_{0}^{2 \pi} \sin 2 m x d x=\dfrac{1}{2}\left[\dfrac{-\cos 2 m x}{2 m}\right]_{0}^{2 \pi}=0. \nonumber \]
  • https://math.libretexts.org/Bookshelves/Differential_Equations/Partial_Differential_Equations_(Walet)/04%3A_Fourier_Series/4.05%3A_When_is_it_a_Fourier_Series
    The Fourier coefficients are \[\begin{aligned} a_0 &= \frac{1}{5} \int_{-5}^0 -3 dx + \frac{1}{5} \int^{5}_0 3 dx = 0 \nonumber\\ a_n &= \frac{1}{5} \int_{-5}^0 -3 \cos\left(\frac{n\pi x}{5}\right) +\...The Fourier coefficients are \[\begin{aligned} a_0 &= \frac{1}{5} \int_{-5}^0 -3 dx + \frac{1}{5} \int^{5}_0 3 dx = 0 \nonumber\\ a_n &= \frac{1}{5} \int_{-5}^0 -3 \cos\left(\frac{n\pi x}{5}\right) +\frac{1}{5} \int_0^5 3 \cos\left(\frac{n\pi x}{5}\right) = 0\\ b_n &= \frac{1}{5} \int_{-5}^0 -3 \sin\left(\frac{n\pi x}{5}\right) +\frac{1}{5} \int_0^5 3 \sin\left(\frac{n\pi x}{5}\right) \nonumber\\ &= \left.\frac{3}{n\pi}\cos\left(\frac{n\pi x}{5}\right)\right|^0_{-5} -\left.\frac{3}{n\pi}\cos\le…
  • https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/03%3A_Trigonometric_Fourier_Series/3.02%3A_Fourier_Trigonometric_Series
    Our goal is to find the Fourier series representation given f(x) . Having found the Fourier series representation, we will be interested in determining when the Fourier series converges and to what f...Our goal is to find the Fourier series representation given f(x) . Having found the Fourier series representation, we will be interested in determining when the Fourier series converges and to what function it converges.
  • https://math.libretexts.org/Bookshelves/Differential_Equations/Differential_Equations_(Chasnov)/09%3A_Partial_Differential_Equations/9.03%3A_Fourier_Series
    The orthogonality relations for \(n\) and \(m\) positive integers are then given with compact notation as the integration formulas \[\label{eq:2} \int_{-L}^L\cos\left(\frac{m\pi x}{L}\right)\cos\left(...The orthogonality relations for \(n\) and \(m\) positive integers are then given with compact notation as the integration formulas \[\label{eq:2} \int_{-L}^L\cos\left(\frac{m\pi x}{L}\right)\cos\left(\frac{n\pi x}{L}\right)dx=L\delta_{nm},\] \[\label{eq:3}\int_{-L}^L\sin\left(\frac{m\pi x}{L}\right)\sin\left(\frac{n\pi x}{L}\right)dx=L\delta_{nm},\] \[\label{eq:4}\int_{-L}^L\cos\left(\frac{m\pi x}{L}\right)\sin\left(\frac{n\pi x}{L}\right)dx=0.\]

Support Center

How can we help?