Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 69 results
  • https://math.libretexts.org/Learning_Objects/GeoGebra_Simulations/Differentiation%3A_Identify_the_Derivative_Function_(GeoGebra)
  • https://math.libretexts.org/Learning_Objects/GeoGebra_Simulations/Differentiation%3A_Identify_a_Function_and_its_First_and_Second_Derivatives_(GeoGebra)
    The function `f` First derivative `f'` Second derivative `f''` RED BLUE BLACK
  • https://math.libretexts.org/Learning_Objects/GeoGebra_Simulations/Related_Rates%3A_Two_Trains_(GeoGebra)
  • https://math.libretexts.org/Learning_Objects/GeoGebra_Simulations/Optimization%3A_Function_and_Rectangle_I_(GeoGebra)
  • https://math.libretexts.org/Courses/Al_Akhawayn_University/MTH2301_Multivariable_Calculus/17%3A_Visualizations/17.07%3A_Geogebra_visual-_spherical_coordinates
  • https://math.libretexts.org/Courses/Al_Akhawayn_University/MTH2301_Multivariable_Calculus/11%3A_Vectors_and_the_Geometry_of_Space/11.06%3A_Quadric_Surfaces/11.6.05%3A_Quadric_surfaces_-_explore_the_hyperbolic_paraboloid
    Use the sliders to explore the effect of a change in the parameters a, b, c on the shape of the hyperbolic paraboloid zc=x2a2y2b2. You can see the trac...Use the sliders to explore the effect of a change in the parameters a, b, c on the shape of the hyperbolic paraboloid zc=x2a2y2b2. You can see the traces in the different coordinate planes, both on the 3-dimensional view and in the coordinate planes. The curve A2 on the right shows you the trace in a plane parallel to the xy-plane.
  • https://math.libretexts.org/Courses/Al_Akhawayn_University/MTH2301_Multivariable_Calculus/11%3A_Vectors_and_the_Geometry_of_Space/11.06%3A_Quadric_Surfaces/11.6.00%3A_Quadric_surfaces_-_explore_the_ellipsoid
    Use the sliders to explore the effect of a change in the parameters a, b, c on the shape of the ellipsoid x2a2+y2b2+z2c2=1. You can see the traces in ...Use the sliders to explore the effect of a change in the parameters a, b, c on the shape of the ellipsoid x2a2+y2b2+z2c2=1. You can see the traces in the different coordinate planes, both on the 3-dimensional view and in the coordinate planes. Click here to return to the gallery of quadric surfaces. Interact with Geogebra: ellipsoid Geogebra visuals created with GeoGebra®, by Yasser Lemghari and Veronique Van Lierde (Al Akhawayn University)
  • https://math.libretexts.org/Courses/Al_Akhawayn_University/MTH2301_Multivariable_Calculus/17%3A_Visualizations/17.14%3A_Geogebra_visual-_parametric_equations_of_an_ellipse_in_a_horizontal_plane
  • https://math.libretexts.org/Courses/Al_Akhawayn_University/MTH2301_Multivariable_Calculus/17%3A_Visualizations/17.08%3A_Geogebra_visual-_helix
  • https://math.libretexts.org/Learning_Objects/GeoGebra_Simulations/Integration%3A_Gaining_Geometric_Intuition_(GeoGebra)
    `f(x)` = The integral of `f(x)` from `a` to `b` is .
  • https://math.libretexts.org/Learning_Objects/GeoGebra_Simulations/Related_Rates%3A_Conical_Tank_(GeoGebra)

Support Center

How can we help?