Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
    • Number of Print Columns
  • Include attachments
Searching in
About 3 results
  • https://math.libretexts.org/Bookshelves/Linear_Algebra/Linear_Algebra_with_Applications_(Nicholson)/10%3A_Inner_Product_Spaces/10.02%3A_Orthogonal_Sets_of_Vectors
    The idea that two lines can be perpendicular is fundamental in geometry, and this section is devoted to introducing this notion into a general inner product space V.
  • https://math.libretexts.org/Bookshelves/Applied_Mathematics/Numerical_Methods_(Chasnov)/05%3A_Interpolation/5.01%3A_Polynomial_Interpolation
    \[\begin{array}{r} P_{n}(x)=\dfrac{\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right) y_{0}}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \cdots\left(x_{0}-x_{n}\right)}+\dfrac{\l...\[\begin{array}{r} P_{n}(x)=\dfrac{\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right) y_{0}}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \cdots\left(x_{0}-x_{n}\right)}+\dfrac{\left(x-x_{0}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right) y_{1}}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \cdots\left(x_{1}-x_{n}\right)} \\ +\cdots+\dfrac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right) y_{n}}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \…
  • https://math.libretexts.org/Courses/SUNY_Schenectady_County_Community_College/A_First_Journey_Through_Linear_Algebra/07%3A_Inner_Product_Spaces/7.02%3A_Orthogonal_Sets_of_Vectors
    The idea that two lines can be perpendicular is fundamental in geometry, and this section is devoted to introducing this notion into a general inner product space V.

Support Center

How can we help?