From the Taylor series expansion of f(x) about x=h/2, we have \[f(0)=f(h / 2)-\frac{h}{2} f^{\prime}(h / 2)+\frac{h^{2}}{8} f^{\prime \prime}(h / 2)-\frac{h^{3}}{48} f^{\prime \prime \prime}...From the Taylor series expansion of f(x) about x=h/2, we have f(0)=f(h/2)−h2f′(h/2)+h28f′′(h/2)−h348f′′′(h/2)+h4384f′′′′(h/2)+…, and \[f(h)=f(h / 2)+\frac{h}{2} f^{\prime}(h / 2)+\frac{h^{2}}{8} f^{\prime \prime}(h / 2)+\frac{h^{3}}{48} f^{\prime \prime \prime}(h / 2)+\frac{h^{4}}{384} f^{\prime \prime \prime \prime}(h / 2)+\ldots \ldots \n…