Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
    • Number of Print Columns
  • Include attachments
Searching in
About 2 results
  • https://math.libretexts.org/Bookshelves/Linear_Algebra/Interactive_Linear_Algebra_(Margalit_and_Rabinoff)/05%3A_Eigenvalues_and_Eigenvectors/5.03%3A_Diagonalization
    This page covers diagonalizability of matrices, explaining that a matrix is diagonalizable if it can be expressed as \(A = CDC^{-1}\) with \(D\) diagonal. It discusses the Diagonalization Theorem, eig...This page covers diagonalizability of matrices, explaining that a matrix is diagonalizable if it can be expressed as \(A = CDC^{-1}\) with \(D\) diagonal. It discusses the Diagonalization Theorem, eigenspaces, eigenvalues, and the significance of linear independence among eigenvectors. Multiple diagonal forms can arise, while geometric and algebraic multiplicities influence diagonalizability.
  • https://math.libretexts.org/Courses/Irvine_Valley_College/Math_26%3A_Introduction_to_Linear_Algebra/03%3A_Eigenvalues_and_Eigenvectors/3.03%3A_Geometry_of_Eigenvalues/3.3.01%3A_Geometry_of_Diagonalizable_Matrices
    \[ E_{\frac{1}{2}}=\text{Nul}(A-\frac{1}{2}I)=\text{Nul}\left(\left[\begin{array}{cc}0&-\frac{3}{2}\\0&-\frac{3}{2}\end{array}\right]\right)=\text{Nul}\left( \left[\begin{array}{cc}0&1\\0&0\end{array}...\[ E_{\frac{1}{2}}=\text{Nul}(A-\frac{1}{2}I)=\text{Nul}\left(\left[\begin{array}{cc}0&-\frac{3}{2}\\0&-\frac{3}{2}\end{array}\right]\right)=\text{Nul}\left( \left[\begin{array}{cc}0&1\\0&0\end{array}\right]\right)=\text{Span}\left\{\left[ \begin{array} {c} 1 \\ 0 \end{array} \right]\right\}\nonumber \]

Support Center

How can we help?