Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
    • Number of Print Columns
  • Include attachments
Searching in
About 3 results
  • https://math.libretexts.org/Courses/De_Anza_College/Linear_Algebra%3A_A_First_Course/07%3A_Vector_Spaces/7.07%3A_Sums_and_Intersections/7.7E%3A_Exercises_for_Section_7.7
    This page discusses exercises on vector spaces and subspaces in Rn, focusing on geometric interpretations, dimensions of sums and intersections of subspaces U and W, and specific...This page discusses exercises on vector spaces and subspaces in Rn, focusing on geometric interpretations, dimensions of sums and intersections of subspaces U and W, and specific examples of bases. It clarifies that U+W may span the entire space or have distinct dimensions, while intersections can vary in dimension.
  • https://math.libretexts.org/Bookshelves/Linear_Algebra/Interactive_Linear_Algebra_(Margalit_and_Rabinoff)/03%3A_Linear_Transformations_and_Matrix_Algebra/3.02%3A_One-to-one_and_Onto_Transformations
    This page discusses the concepts of one-to-one and onto transformations in linear algebra, focusing on matrix transformations. It defines one-to-one as each output having at most one input and outline...This page discusses the concepts of one-to-one and onto transformations in linear algebra, focusing on matrix transformations. It defines one-to-one as each output having at most one input and outlines examples and theorems related to this property. The text emphasizes that a transformation is onto if every output corresponds to some input.
  • https://math.libretexts.org/Courses/De_Anza_College/Calculus_I%3A_Differential_Calculus/04%3A_Applications_of_Derivatives/4.08%3A_Applied_Optimization_Problems
    One common application of calculus is calculating the minimum or maximum value of a function. For example, companies often want to minimize production costs or maximize revenue. In manufacturing, it i...One common application of calculus is calculating the minimum or maximum value of a function. For example, companies often want to minimize production costs or maximize revenue. In manufacturing, it is often desirable to minimize the amount of material used to package a product with a certain volume. In this section, we show how to set up these types of minimization and maximization problems and solve them by using the tools developed in this chapter.

Support Center

How can we help?