Search
- Filter Results
- Location
- Classification
- Include attachments
- https://math.libretexts.org/Courses/Highline_College/MATH_141%3A_Precalculus_I_(2nd_Edition)/03%3A_Polynomial_and_Rational_Functions/3.02%3A_Quadratic_FunctionsIf the parabola opens up, the vertex represents the lowest point on the graph, or the minimum value of the quadratic function. The vertex of the quadratic function is located at (h, k), where ...If the parabola opens up, the vertex represents the lowest point on the graph, or the minimum value of the quadratic function. The vertex of the quadratic function is located at (h, k), where h and k are the numbers in the transformation form of the function. The process for finding the x-intercepts is done commonly enough that sometimes people find it easier to solve the problem once in general and remember the formula for the result, rather than repeating the process each time.
- https://math.libretexts.org/Workbench/MAT_2420_Calculus_II/07%3A_Parametric_Equations_and_Polar_Coordinates/7.06%3A_Conic_SectionsConic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically shaped parts called nappes. Conic sections are generated by the intersection...Conic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically shaped parts called nappes. Conic sections are generated by the intersection of a plane with a cone. If the plane is parallel to the axis of revolution (the y-axis), then the conic section is a hyperbola. If the plane is parallel to the generating line, the conic section is a parabola. If the plane is perpendicular to the axis of revolution, the conic section is a circle.
- https://math.libretexts.org/Courses/Mission_College/Math_3B%3A_Calculus_2_(Sklar)/11%3A_Parametric_Equations_and_Polar_Coordinates/11.05%3A_Conic_SectionsConic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically shaped parts called nappes. Conic sections are generated by the intersection...Conic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically shaped parts called nappes. Conic sections are generated by the intersection of a plane with a cone. If the plane is parallel to the axis of revolution (the y-axis), then the conic section is a hyperbola. If the plane is parallel to the generating line, the conic section is a parabola. If the plane is perpendicular to the axis of revolution, the conic section is a circle.
- https://math.libretexts.org/Courses/Highline_College/MATHP_141%3A_Corequisite_Precalculus/04%3A_Polynomial_and_Rational_Functions/4.02%3A_Quadratic_FunctionsIf the parabola opens up, the vertex represents the lowest point on the graph, or the minimum value of the quadratic function. The vertex of the quadratic function is located at (h, k), where ...If the parabola opens up, the vertex represents the lowest point on the graph, or the minimum value of the quadratic function. The vertex of the quadratic function is located at (h, k), where h and k are the numbers in the transformation form of the function. The process for finding the x-intercepts is done commonly enough that sometimes people find it easier to solve the problem once in general and remember the formula for the result, rather than repeating the process each time.
- https://math.libretexts.org/Courses/Mission_College/MAT_3B_Calculus_II_(Kravets)/11%3A_Parametric_Equations_and_Polar_Coordinates/11.01%3A_Conic_SectionsConic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically shaped parts called nappes. Conic sections are generated by the intersection...Conic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically shaped parts called nappes. Conic sections are generated by the intersection of a plane with a cone. If the plane is parallel to the axis of revolution (the y-axis), then the conic section is a hyperbola. If the plane is parallel to the generating line, the conic section is a parabola. If the plane is perpendicular to the axis of revolution, the conic section is a circle.
- https://math.libretexts.org/Courses/City_College_of_San_Francisco/CCSF_Calculus_II__Integral_Calculus_._Lockman_Spring_2024/06%3A_Parametric_Equations_and_Polar_Coordinates/6.05%3A_Conic_SectionsConic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically shaped parts called nappes. Conic sections are generated by the intersection...Conic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically shaped parts called nappes. Conic sections are generated by the intersection of a plane with a cone. If the plane is parallel to the axis of revolution (the y-axis), then the conic section is a hyperbola. If the plane is parallel to the generating line, the conic section is a parabola. If the plane is perpendicular to the axis of revolution, the conic section is a circle.
- https://math.libretexts.org/Courses/Coastline_College/Math_C097%3A_Support_for_Precalculus_Corequisite%3A_MATH_C170/1.04%3A_Polynomial_and_Rational_Functions/1.4.02%3A_Quadratic_FunctionsIf the parabola opens up, the vertex represents the lowest point on the graph, or the minimum value of the quadratic function. The vertex of the quadratic function is located at (h, k), where ...If the parabola opens up, the vertex represents the lowest point on the graph, or the minimum value of the quadratic function. The vertex of the quadratic function is located at (h, k), where h and k are the numbers in the transformation form of the function. The process for finding the x-intercepts is done commonly enough that sometimes people find it easier to solve the problem once in general and remember the formula for the result, rather than repeating the process each time.
- https://math.libretexts.org/Courses/Mission_College/Mission_College_MAT_003B/07%3A_Parametric_Equations_and_Polar_Coordinates/7.01%3A_Conic_SectionsConic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically shaped parts called nappes. Conic sections are generated by the intersection...Conic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically shaped parts called nappes. Conic sections are generated by the intersection of a plane with a cone. If the plane is parallel to the axis of revolution (the y-axis), then the conic section is a hyperbola. If the plane is parallel to the generating line, the conic section is a parabola. If the plane is perpendicular to the axis of revolution, the conic section is a circle.
- https://math.libretexts.org/Courses/City_College_of_San_Francisco/CCSF_Calculus/10%3A_Parametric_Equations_and_Polar_Coordinates/10.06%3A_Conic_SectionsConic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically shaped parts called nappes. Conic sections are generated by the intersection...Conic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically shaped parts called nappes. Conic sections are generated by the intersection of a plane with a cone. If the plane is parallel to the axis of revolution (the y-axis), then the conic section is a hyperbola. If the plane is parallel to the generating line, the conic section is a parabola. If the plane is perpendicular to the axis of revolution, the conic section is a circle.
- https://math.libretexts.org/Courses/Community_College_of_Denver/MAT_2420_Calculus_II/07%3A_Parametric_Equations_and_Polar_Coordinates/7.05%3A_Conic_SectionsConic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically shaped parts called nappes. Conic sections are generated by the intersection...Conic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically shaped parts called nappes. Conic sections are generated by the intersection of a plane with a cone. If the plane is parallel to the axis of revolution (the y-axis), then the conic section is a hyperbola. If the plane is parallel to the generating line, the conic section is a parabola. If the plane is perpendicular to the axis of revolution, the conic section is a circle.
- https://math.libretexts.org/Courses/Mission_College/Math_3B%3A_Calculus_II_(Reed)/11%3A_Parametric_Equations_and_Polar_Coordinates/11.01%3A_Conic_SectionsConic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically shaped parts called nappes. Conic sections are generated by the intersection...Conic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically shaped parts called nappes. Conic sections are generated by the intersection of a plane with a cone. If the plane is parallel to the axis of revolution (the y-axis), then the conic section is a hyperbola. If the plane is parallel to the generating line, the conic section is a parabola. If the plane is perpendicular to the axis of revolution, the conic section is a circle.