Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Embed Hypothes.is?
    • Cover Page
    • License
    • Show Page TOC
    • Transcluded
    • PrintOptions
    • OER program or Publisher
    • Autonumber Section Headings
    • License Version
    • Print CSS
    • Screen CSS
  • Include attachments
Searching in
About 18 results
  • https://math.libretexts.org/Courses/City_College_of_San_Francisco/CCSF_Calculus/06%3A_Applications_of_Integration/6.05%3A_Hydrostatic_Force_and_Pressure
    This section covers hydrostatic force and pressure, explaining how to calculate the force exerted by a fluid at rest on a surface using integration. It introduces the concepts of fluid pressure, force...This section covers hydrostatic force and pressure, explaining how to calculate the force exerted by a fluid at rest on a surface using integration. It introduces the concepts of fluid pressure, force, and depth, and provides formulas for computing these quantities. The section includes practical examples, such as finding the force on submerged plates or walls, and emphasizes setting up integrals based on geometric and physical principles.
  • https://math.libretexts.org/Courses/City_College_of_San_Francisco/CCSF_Calculus_II__Integral_Calculus_._Lockman_Spring_2024/02%3A_Applications_of_Integration/2.06%3A_Hydrostatic_Force_and_Pressure
    This section covers hydrostatic force and pressure, explaining how to calculate the force exerted by a fluid at rest on a surface using integration. It introduces the concepts of fluid pressure, force...This section covers hydrostatic force and pressure, explaining how to calculate the force exerted by a fluid at rest on a surface using integration. It introduces the concepts of fluid pressure, force, and depth, and provides formulas for computing these quantities. The section includes practical examples, such as finding the force on submerged plates or walls, and emphasizes setting up integrals based on geometric and physical principles.
  • https://math.libretexts.org/Courses/Coastline_College/Math_C185%3A_Calculus_II_(Everett)/03%3A_Applications_of_Integration/3.09%3A_More_Physical_Applications_of_Integration
    In this section, we examine some physical applications of integration. Several physical applications of the definite integral are common in engineering and physics. Definite integrals can be used to d...In this section, we examine some physical applications of integration. Several physical applications of the definite integral are common in engineering and physics. Definite integrals can be used to determine the mass of an object if its density function is known. Work can also be calculated from integrating a force function, or when counteracting the force of gravity, as in a pumping problem. Definite integrals can also be used to calculate the force exerted on an object submerged in a liquid.
  • https://math.libretexts.org/Courses/Mission_College/MAT_3B_Calculus_II_(Kravets)/07%3A_Applications_of_Integration/7.05%3A_Physical_Applications_of_Integration
    In this section, we examine some physical applications of integration. Several physical applications of the definite integral are common in engineering and physics. Definite integrals can be used to d...In this section, we examine some physical applications of integration. Several physical applications of the definite integral are common in engineering and physics. Definite integrals can be used to determine the mass of an object if its density function is known. Work can also be calculated from integrating a force function, or when counteracting the force of gravity, as in a pumping problem. Definite integrals can also be used to calculate the force exerted on an object submerged in a liquid.
  • https://math.libretexts.org/Courses/Mission_College/Math_3B%3A_Calculus_II_(Reed)/07%3A_Applications_of_Integration/7.05%3A_Physical_Applications_of_Integration
    In this section, we examine some physical applications of integration. Several physical applications of the definite integral are common in engineering and physics. Definite integrals can be used to d...In this section, we examine some physical applications of integration. Several physical applications of the definite integral are common in engineering and physics. Definite integrals can be used to determine the mass of an object if its density function is known. Work can also be calculated from integrating a force function, or when counteracting the force of gravity, as in a pumping problem. Definite integrals can also be used to calculate the force exerted on an object submerged in a liquid.
  • https://math.libretexts.org/Courses/Cosumnes_River_College/Math_401%3A_Calculus_II_-_Integral_Calculus/01%3A_Applications_of_Integration/1.07%3A_Hydrostatic_Force_and_Pressure
    This section covers hydrostatic force and pressure, explaining how to calculate the force exerted by a fluid at rest on a surface using integration. It introduces the concepts of fluid pressure, force...This section covers hydrostatic force and pressure, explaining how to calculate the force exerted by a fluid at rest on a surface using integration. It introduces the concepts of fluid pressure, force, and depth, and provides formulas for computing these quantities. The section includes practical examples, such as finding the force on submerged plates or walls, and emphasizes setting up integrals based on geometric and physical principles.
  • https://math.libretexts.org/Courses/SUNY_Geneseo/Math_222_Calculus_2/01%3A_Applications_of_Integration/1.05%3A_Physical_Applications_of_Integration
    In this section, we examine some physical applications of integration. Several physical applications of the definite integral are common in engineering and physics. Definite integrals can be used to d...In this section, we examine some physical applications of integration. Several physical applications of the definite integral are common in engineering and physics. Definite integrals can be used to determine the mass of an object if its density function is known. Work can also be calculated from integrating a force function, or when counteracting the force of gravity, as in a pumping problem. Definite integrals can also be used to calculate the force exerted on an object submerged in a liquid.
  • https://math.libretexts.org/Workbench/MAT_2420_Calculus_II/02%3A_Applications_of_Integration/2.06%3A_Physical_Applications_of_Integration
    In this section, we examine some physical applications of integration. Several physical applications of the definite integral are common in engineering and physics. Definite integrals can be used to d...In this section, we examine some physical applications of integration. Several physical applications of the definite integral are common in engineering and physics. Definite integrals can be used to determine the mass of an object if its density function is known. Work can also be calculated from integrating a force function, or when counteracting the force of gravity, as in a pumping problem. Definite integrals can also be used to calculate the force exerted on an object submerged in a liquid.
  • https://math.libretexts.org/Courses/Monroe_Community_College/MTH_211_Calculus_II/Chapter_6%3A_Applications_of_Integration/6.5b%3A_More_Physical_Applications_of_Integration
    In this section, we examine some physical applications of integration. Several physical applications of the definite integral are common in engineering and physics. Definite integrals can be used to d...In this section, we examine some physical applications of integration. Several physical applications of the definite integral are common in engineering and physics. Definite integrals can be used to determine the mass of an object if its density function is known. Work can also be calculated from integrating a force function, or when counteracting the force of gravity, as in a pumping problem. Definite integrals can also be used to calculate the force exerted on an object submerged in a liquid.
  • https://math.libretexts.org/Courses/Mission_College/Mission_College_MAT_003B/02%3A_Applications_of_Integration/2.05%3A_Physical_Applications_of_Integration
    In this section, we examine some physical applications of integration. Several physical applications of the definite integral are common in engineering and physics. Definite integrals can be used to d...In this section, we examine some physical applications of integration. Several physical applications of the definite integral are common in engineering and physics. Definite integrals can be used to determine the mass of an object if its density function is known. Work can also be calculated from integrating a force function, or when counteracting the force of gravity, as in a pumping problem. Definite integrals can also be used to calculate the force exerted on an object submerged in a liquid.
  • https://math.libretexts.org/Courses/Cosumnes_River_College/Math_401%3A_Calculus_II_-_Integral_Calculus_Lecture_Notes_(Simpson)/01%3A_Applications_of_Integration/1.06%3A_Hydrostatic_Force_and_Pressure
    In this section, we examine some physical applications of integration. Several physical applications of the definite integral are common in engineering and physics. Definite integrals can be used to d...In this section, we examine some physical applications of integration. Several physical applications of the definite integral are common in engineering and physics. Definite integrals can be used to determine the mass of an object if its density function is known. Work can also be calculated from integrating a force function, or when counteracting the force of gravity, as in a pumping problem. Definite integrals can also be used to calculate the force exerted on an object submerged in a liquid.

Support Center

How can we help?